

PH125: Applied Physics				
Course Code	PH125	Semester	1st	
Credit Hours	3	Term	Fall 2017	
Instructor	Usama Bin Sikandar	Pre-reqs	None	
E-mail	<u>usama.sikandar@itu.edu.pk</u>	Department	Electrical Engineering	
Office	Room#9, 4th floor	Discipline	Physics	
Instructor	Monday 2-4PM	Teaching	Muhammad Awais, Zaki Ahmad	
Office Hours	Fionady 2 II Fi	Assistants	Franklinde Hwais, Zaki Alimae	

Course Description:

This course focuses on Newtonian mechanics, electricity and magnetism. The students will learn how to apply vector calculus to solve fundamental conceptual problems from these topics.

Course Outcomes/Objectives:

On the completion of the course, the student will be able to demonstrate the following:

- Set up a problem using free-body diagram and Newton's laws
- Apply concepts of calculus to solve basic problems in Physics
- Get used to the ideas of vector calculus such as gradient, line integrals and surface integrals
- Understand the terms work, energy and power
- Appreciate the knowledge of uncertainty in measurements and consistency with dimensions
- Appreciate why Newton's, Gauss's, Faraday's and Ampere's laws are deeply fundamental to science

Books:			
Text Book	1. Physics for Engineers and Scientists (3rd edition) by H.C. Ohanian and J. T. Markert		
	a. <u>Volume 1</u>		
	b. <u>Volume 2</u>		
	2. Physics for Scientists and Engineers: A strategic Approach with Modern Physics (4th		
	<u>edition) by R. D. Knight</u>		
Reference	1. Fundamentals of Physics (10th edition) by D. Halliday, R. Resnick and J. Walker		
Books	2. The Feynman Lectures on Physics (Volume I and III)		

Weekly Lecture Breakdown :			
Week 1:	Introduction, Measurements	Week 10:	Electric Charge
Week 2:	Kinematics	Week 11:	Electric Field
Week 3:	Newton's laws	Week 12:	Electric Potential
Week 4:	Energy	Week 13:	Capacitance, DC circuits
Week 5:	Momentum, Rigid body rotation	Week 14:	Magnetic field
Week 6:	Rigid body dynamics	Week 15:	Magnetic field
Week 7:	Electric charge	Week 16:	Electromagnetic induction
Week 8:	Electric field	Week 17:	Prep Week
Week 9:	Mid-term exam	Week 18:	Final exam

Chapter	Topics	Lectures
	Introduction	1
Ohanian	Measurements	1
Ch 1	Units	
	SI units	
	Dimensions	
	Precision	
	Measurement error	
Ohanian	Vectors	1
Ch 3	Coordinate system	
	Addition and multiplication	
Ohanian	Kinematics	2
Ch 2, 4	 Speed, velocity acceleration 	
,	Free-fall, projectile and circular motion	
Ohanian	Newton's Laws	3
Ch 5, 6	 1st law and inertia 	
,	2nd law, free-body diagram and superposition	
	3rd law and normal reaction force and friction	
	Types of forces	
Ohanian	Energy	2
Ch 7, 8	• Work	
,	 Kinetic and potential energy 	
	Energy conservation	
	• Power	
Ohanian	Systems of Particles	2
Ch 10, 11	 Momentum 	
	Center of mass	
	Elastic and inelastic collisions	
Ohanian	Rigid Body Rotation	2
Ch 12	Rotation about a fixed axis	
	Kinematics in angular motion	
	Moment of inertia	
	Kinetic energy	
Ohanian	Rigid Body Dynamics	2
Ch 13	 Work, energy and power 	
	• Torque	
	Angular momentum	
	Mid Term Exam	
Ohanian	Electric Charge	1
Ch 22	 Electrostatic force 	
	Coulomb's law	
	Superposition	
Ohanian	Electric field	3
Ch 23, 24	 Field lines 	_

	Final Exam	
	Maxwell's Equations	
	Ampere's law, with displacement current	
33.1	 Inductance 	
31.1-31.4 33.1	 Faraday's law Lenz's law 	
Ch 31.1-31.4		
Ohanian Ch	Electromagnetic InductionInduced electric field and EMF	3
Ohanian	Gauss's law for magnetic field Flogtromagnetic Induction	2
	Solenoids Council low for momentia field	
	Ampere's law	
	Biot-Savart law	
	Lorentz Force	
30.1-30.2	Motion of charged particles	
Ch 29,	Force on a current-carrying wire	
Ohanian	Magnetic Field	3
	• Energy	
	• KCL, KVL	
	• EMF	
	Resistor combinations	
28.1-28.6	Resistance and Resistivity	
Ch 27,	Electric current	
Ohanian	Ohm's Law	1
	• Energy	
	Dielectrics	
	 Combination 	
011 20	Gauss's law	
Ch 26	Capacitance	1
Ohanian	Energy Capacitors	1
	 Relationship with electric field Potential due to charged particles and conductors 	
Ch 25	Electrostatic potential	
Ohanian	Electric Potential	2
	Conductors	
	• Gauss's law	
	Electric flux	
	Motion in an electric field	
	Continuous charge distribution	

Course Assessment Distribution:	
Quizzes:	15 %
Assignments:	10 %
Mid-term Exam:	30 %
Final Exam:	45 %

Grading Policy:	
Quiz Policy:	At the end of each recitation, there will be a graded quiz. The problems will be framed so as to test the concepts involved in last two lectures. Grading for quizzes will generally be on a scale of 0 to 10. There will be a total of 15 quizzes, 2 of which will be dropped. This means your best 13 quizzes out of 15 will be counted towards your final grade. There will be no make-up quiz whatsoever. So, plan your leaves accordingly.
Assignment Policy:	In order to develop comprehensive understanding of the subject, assignments will be given. Assignments late by one day will be penalized by 20%. After that nothing will be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment individually. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The problems in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.
Plagiarism:	ITU maintains a zero-tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the ITU plagiarism policy will lead to strict penalties including a failing grade in the course and referral to the disciplinary committee for a strict action, which may possibly lead to failing grades in all the courses of the semester.