	MT240: Complex Variables and Transforms		<u>\$</u>
		Worksheet 9	
	Fri, Apr 5		Spring 2019
Roll# Student 1: Roll# Evaluator		Roll# Evaluator 1:	
Roll# Student 2:		Roll $\#$ Evaluator 2:	

Problem 1 [45 minutes]

Consider the following periodic function f(t).

- (a) What are time period T and fundamental frequency ω_0 of f(t)?
- (b) Specify whether the function is even, odd or neither?
- (c) Write down equation of the function in terms of t in the interval $-\frac{T}{2} \le t \le \frac{T}{2}$.
- (d) Using your answer to (b) as a guide, evaluate the Fourier series of f(t), i.e. find the values of a_n and b_n .
- (e) Based on (b) predict the form of c_n (real, pure imaginary or complex).
- (f) Based on (b) predict the relationship between c_n and c_{-n} .
- (g) Evaluate the complex Fourier series of f(t) using a_n and b_n , i.e. evaluate c_n using a_n and b_n .
- (h) Now evaluate the complex Fourier series using the integration formula for c_n .
- (i) Plot its amplitude and phase spectrum.
- (j) Plot its power spectrum against n i.e $|c_n|^2$ against n.

Problem 2 [30 minutes]

Now consider the following periodic function g(t).

Without evaluating any Fourier coefficients again using integration formulas, answer the following using your answers to Problem 1.

- (a) Express g(t) in terms of f(t).
- (b) Evaluate the complex Fourier series of g(t).
- (c) Plot its amplitude and phase spectrum
- (d) Plot its power spectrum against n i.e $|c_n|^2$ against n.