Roll\# Student 1:
Roll\# Evaluator 1:

Roll\# Student 2:
Roll\# Evaluator 2:

Problem 1 [45 minutes]

Consider the following periodic function $f(t)$.

(a) What are time period T and fundamental frequency ω_{0} of $f(t)$?
(b) Specify whether the function is even, odd or neither?
(c) Write down equation of the function in terms of t in the interval $-\frac{T}{2} \leq t \leq \frac{T}{2}$.
(d) Using your answer to (b) as a guide, evaluate the Fourier series of $f(t)$, i.e. find the values of a_{n} and b_{n}.
(e) Based on (b) predict the form of c_{n} (real, pure imaginary or complex).
(f) Based on (b) predict the relationship between c_{n} and c_{-n}.
(g) Evaluate the complex Fourier series of $f(t)$ using a_{n} and b_{n}, i.e. evaluate c_{n} using a_{n} and b_{n}.
(h) Now evaluate the complex Fourier series using the integration formula for c_{n}.
(i) Plot its amplitude and phase spectrum.
(j) Plot its power spectrum against n i.e $\left|c_{n}\right|^{2}$ against n.

Problem 2 [30 minutes]

Now consider the following periodic function $g(t)$.

Without evaluating any Fourier coefficients again using integration formulas, answer the following using your answers to Problem 1.
(a) Express $g(t)$ in terms of $f(t)$.
(b) Evaluate the complex Fourier series of $g(t)$.
(c) Plot its amplitude and phase spectrum
(d) Plot its power spectrum against n i.e $\left|c_{n}\right|^{2}$ against n.

