Worksheet 7

	VV011811000	1	
1	Fri, Mar 15		Spring 2019
Roll# S	Student 1:	Roll# Evaluator 1:	
Roll# S	Student 2:	Roll $\#$ Evaluator 2:	

Problem 1 [15 minutes]

For the Möbius transformations $f(z) = \frac{5z-3}{z+i}$, answer the following. For each part, draw the preimage in z-plane and its image in w-plane. Use the same z- and w-planes for parts (i)-(iv). Then make separate zs and w-planes and use these for parts (vi)-(ix).

- (i) Evaluate f(0)
- (ii) Evaluate $\lim_{z \to \infty} f(z)$
- (iii) Find the value of z where f(z) = 0.
- (iv) Find the value of z where $f(z) \to \infty$
- (v) Find the inverse function $f^{-1}(w)$. Let $g(z) = f^{-1}(z)$.

- (vi) Evaluate q(0)
- (vii) Evaluate $\lim_{z \to \infty} g(z)$
- (viii) Find the value of z where g(z) = 0
- (ix) Find the value z where $q(z) \to \infty$
- (x) Compare parts (i)-(iv) with parts (vi)-(ix). What can you conclude about your answers?

Problem 2 [5 minutes]

Find a Möbius transformation which maps the points $z_1 = 0$, $z_2 = -i$ and $z_3 = i$ to 0, 1 and ∞ respectively.

Problem 3 [15 minutes]

Draw the map of the circle |z - 1| = 1 under the transformation

$$f(z) = \frac{6z+6}{2z+1}$$

Problem 4 [25 minutes]

Evaluate the integral

$$\int_{\gamma}(2z+iz^2)dz$$

over each of the following curves using curve parametrization.

- (a) γ : from z = 0 to z = 2 2i along the line y = -x
- (b) γ : from z = -1 to z = 1 in the upper half of unit circle centered at origin
- (c) γ : from z = -1 to z = 1 in the lower half of unit circle centered at origin
- (d) γ : from z = 1 back to z = 1 counterclockwise in a circle of radius 2 centered at 1 + 2i.

Problem 5 [15 minutes]

Solve Problem 4 using the fundamental theorem of calculus and the concept of *primitive* and path independence in the complex plane.

