Problem 1 [15 minutes]

For the Möbius transformations $f(z)=\frac{5 z-3}{z+i}$, answer the following. For each part, draw the preimage in z-plane and its image in w-plane. Use the same z - and w-planes for parts (i)-(iv). Then make separate z s and w-planes and use these for parts (vi)-(ix).
(i) Evaluate $f(0)$
(ii) Evaluate $\lim _{z \rightarrow \infty} f(z)$
(iii) Find the value of z where $f(z)=0$.
(iv) Find the value of z where $f(z) \rightarrow \infty$
(v) Find the inverse function $f^{-1}(w)$. Let $g(z)=f^{-1}(z)$.
(vi) Evaluate $g(0)$
(vii) Evaluate $\lim _{z \rightarrow \infty} g(z)$
(viii) Find the value of z where $g(z)=0$
(ix) Find the value z where $g(z) \rightarrow \infty$
(x) Compare parts (i)-(iv) with parts (vi)-(ix). What can you conclude about your answers?

Problem 2 [5 minutes]

Find a Möbius transformation which maps the points $z_{1}=0, z_{2}=-i$ and $z_{3}=i$ to 0,1 and ∞ respectively.

Problem 3 [15 minutes]

Draw the map of the circle $|z-1|=1$ under the transformation

$$
f(z)=\frac{6 z+6}{2 z+1}
$$

Problem 4 [25 minutes]

Evaluate the integral

$$
\int_{\gamma}\left(2 z+i z^{2}\right) d z
$$

over each of the following curves using curve parametrization.
(a) γ : from $z=0$ to $z=2-2 i$ along the line $y=-x$
(b) γ : from $z=-1$ to $z=1$ in the upper half of unit circle centered at origin
(c) γ : from $z=-1$ to $z=1$ in the lower half of unit circle centered at origin
(d) γ : from $z=1$ back to $z=1$ counterclockwise in a circle of radius 2 centered at $1+2 i$.

Problem 5 [15 minutes]

Solve Problem 4 using the fundamental theorem of calculus and the concept of primitive and path independence in the complex plane.

