Roll\# Student 1:
Roll\# Evaluator 1:
Roll\# Student 2:
Roll\# Evaluator 2:

Problem 1

Find poles and zeros of the rational function $R(z)=\frac{4 z+4-8 i}{z^{2}+2 i z+3}$ and express it in the factorized form.

Problem 2

Write each of the following in the form $x+i y$, when \log is complex logarithmic with base e
(a) $e^{3+4 i}$
(b) $\cos (1-i)$

Problem 3

Find the principal values of the following.
(a) $\log (-e i)$
(b) $\log (1-i \sqrt{3})$

Problem 4

For the given functions
(a) $f(z)=\frac{1}{z}$
(b) $f(z)=z^{3}$
(i) Find all the points where $f^{\prime}(z)=0$.
(ii) Show that there is a domain on which the function is one-to-one. Find all the poins in this domain.
(iii) If possible, define the corresponding range of $f(z)$ in the set notation.
(iv) If possible, find its inverse function $f^{-1}(z)$.

Problem 5

Under the following transformations,
(a) $f(z)=(1+i) z-2$
(b) $f(z)=\frac{1}{z}$
draw the image of each of the following objects in the complex plane.
(i) $\{z: \operatorname{Re} z=-\operatorname{Im} z\}$
(ii) $\left\{z:\left|z-\frac{1}{2}\right|=\frac{1}{2}\right\}$

