Roll\# Student 1:
Roll\# Student 2:

Roll\# Evaluator 1:
Roll\# Evaluator 2:

Problem 1

For each of the following functions,
(a) $f(z)=z^{5} *$
(c) $f(z)=3 x+y+i(3 y-x)$
(b) $f(z)=e^{-x-i y}$
(d) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$
(i) Show that the function is entire, i.e. analytic everywhere in the complex plane.
[Hint: Theorem 2.3 in the Notes. Consider in the polar form the functions with ${ }^{* *}$ symbol.]
(ii) Find its derivative $f^{\prime}(z)$ using partial derivatives. [Hint: Theorem 2.2 in the Notes]
(iii) Now find its derivative $f^{\prime}(z)$ using differentiation in z and compare your answer with (ii).
(iv) Because the function is entire, its component functions $u(x, y)$ and $v(x, y)$ must be harmonic everywhere in the complex plane. Verify that the functions $u(x, y)$ and $v(x, y)$ are harmonic $\forall z \in \mathbb{C}$. [Hint: Theorem 2.5 in the Notes]
(v) If the function is written in x and y, convert it in terms of z, without making use of \bar{z}.

Problem 2

For each of the following functions, determine the values of z for which $f^{\prime}(z)$ exists, i.e. the function is analytic, and find $f^{\prime}(z)$ for these values.
(a) $f(z)=x^{2}+i y^{2}$
(b) $f(z)=(x+i y) y$

Problem 3

Are the following functions harmonic? If your answer is yes, find a corresponding analytic function $f(z)=u(x, y)+i v(x, y)$.
(a) $u(x, y)=y^{3}-3 x^{2} y$
(d) $u(x, y)=\frac{y}{x^{2}+y^{2}}$
(b) $v(x, y)=3 y-x$
(e) $u(x, y)=e^{-y} \sin x$
(c) $v(x, y)=e^{x} \sin 2 y$
(f) $v(x, y)=x^{2}-y^{2}+2 y$

