Roll\# Student 1:
Roll\# Student 2:

Roll\# Evaluator 1:
Roll\# Evaluator 2:

Problem 1

Under the function $f(z)=e^{z}$, sketch the image of each of the following sets.
(a) $\{z \in \mathbb{C}: \operatorname{Re} z=2\}$
(b) $\left\{z \in \mathbb{C}: \operatorname{Im} z=\frac{\pi}{4}\right\}$
(c) $\left\{z \in \mathbb{C}: \frac{\pi}{4}<\operatorname{Im} z<\frac{3 \pi}{4}\right\}$

Problem 2

Evaluate the following limits. Also specify whether the function is continuous or not at the point where you evaluated the limit.
(a) $\lim _{z \rightarrow-1+i} \frac{z^{2}+2 z+2}{z+1}$
(b) $\lim _{z \rightarrow i} \frac{z^{2}+1}{z(z-i)}$
(c) $\lim _{z \rightarrow 0} \frac{z^{2}}{z}$

Problem 3

For the function $f(z)=\frac{z^{2}}{|z|^{2}}$, evaluate the following limits in the complex plane.
(a) $\lim _{z \rightarrow 0}$ along the positive x-axis
(c) $\lim _{z \rightarrow 0}$ along the line $y=x$
(b) $\lim _{z \rightarrow 0}$ along the positive y-axis
(d) $\lim _{z \rightarrow 0}$ along the line $y=2 x$

Problem 4

Using first principles, find the derivative of the following complex functions at a point $z=z_{0}$.
(a) $f(z)=2 z+1$
(b) $f(z)=2 z^{2}-z$

Problem 5

For each of the following functions,
(a) $f(z)=z^{2}$
(c) $f(z)=3 x+y+i(3 y-x)$
(b) $f(z)=e^{-z}$
(d) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$
(i) Show that the function is 'entire', i.e. analytic everywhere in the complex plane.
[Hint: Theorem 2.3 in the Notes]
(ii) Find its derivative $f^{\prime}(z)$ using partial derivatives.
[Hint: Theorem 2.2 in the Notes]
(iii) If the function is written in x and y, convert it in terms of z.
(iv) Find its derivative $f^{\prime}(z)$ using differentiation in z and compare your answer with (ii).

