		Worksheet 4	I U
	Fri, Feb 22		Spring 2019
Roll# Student 1:		Roll # Evaluator 1:	
Roll# Student 2:		Roll# Evaluator 2:	

Problem 1

Under the function $f(z) = e^z$, sketch the image of each of the following sets.

(a) $\{z \in \mathbb{C} : \text{Re } z = 2\}$ (b) $\{z \in \mathbb{C} : \text{Im } z = \frac{\pi}{4}\}$ (c) $\{z \in \mathbb{C} : \frac{\pi}{4} < \text{Im } z < \frac{3\pi}{4}\}$

Problem 2

Evaluate the following limits. Also specify whether the function is continuous or not at the point where you evaluated the limit.

(a)
$$\lim_{z \to -1+i} \frac{z^2 + 2z + 2}{z + 1}$$
 (b) $\lim_{z \to i} \frac{z^2 + 1}{z(z - i)}$ (c) $\lim_{z \to 0} \frac{z^2}{z}$

Problem 3

For the function $f(z) = \frac{z^2}{|z|^2}$, evaluate the following limits in the complex plane. (a) $\lim_{z \to 0}$ along the positive x-axis (b) $\lim_{z \to 0}$ along the positive y-axis (c) $\lim_{z \to 0}$ along the line y = x(d) $\lim_{z \to 0}$ along the line y = 2x

Problem 4

Using first principles, find the derivative of the following complex functions at a point $z = z_0$.

(a) f(z) = 2z + 1 (b) $f(z) = 2z^2 - z$

Problem 5

For each of the following functions,

- (a) $f(z) = z^2$ (c) f(z) = 3x + y + i(3y x)
- (b) $f(z) = e^{-z}$ (d) $f(z) = e^{-y} \sin x ie^{-y} \cos x$
 - (i) Show that the function is 'entire', i.e. analytic everywhere in the complex plane. [Hint: Theorem 2.3 in the Notes]
- (ii) Find its derivative f'(z) using partial derivatives. [Hint: Theorem 2.2 in the Notes]
- (iii) If the function is written in x and y, convert it in terms of z.
- (iv) Find its derivative f'(z) using differentiation in z and compare your answer with (ii).