Worksheet 3

Roll\# Student 1:
Roll\# Evaluator 1:
Roll\# Student 2:
Roll\# Evaluator 2:

Problem 1

(a) $\{z \in \mathbb{C}:|z|<1 \vee|z-4 i|<3\}$
(b) $\{z \in \mathbb{C}:-\pi<\operatorname{Arg} z<\pi\}$

For each of the above sets, answer the following.
(i) Sketch the set in the complex plane.
(ii) Describe the boundary of the set using the set-builder notation.
(iii) Describe the interior of the set using the set-builder notation.
(iv) Is the set open or closed? Explain.
(v) If the set is open, is it connected? Explain.

Problem 2

For each of the following functions, describe its domain in \mathbb{C}, i.e. set of values of z for which the function is defined.
(a) $f(z)=z+1$
(e) $f(z)=\operatorname{Arg} \frac{1}{z}$
(b) $f(z)=\bar{z}$
(c) $f(z)=\frac{1}{z-1-6 i}$
(f) $f(z)=\frac{z}{z+\bar{z}}$
(d) $f(z)=\frac{1}{z^{2}+2 z+2}$
(g) $f(z)=\frac{1}{1-|z|^{2}}$

Problem 3

Convert the following functions in the form $f(z)=u(x, y)+i v(x, y)$.
(a) $f(z)=z+i$
(d) $f(z)=\frac{1}{z}$
(b) $f(z)=5 i z$
(e) $f(z)=-i z^{2}$
(c) $f(z)=z+i \bar{z}$
(f) $f(z)=e^{2 i z}$

Problem 4

Sketch the region onto which the set $\left\{z:|z|<2\right.$ and $\left.0 \leq \operatorname{Arg} z \leq \frac{\pi}{4}\right\}$ is mapped by each of the following functions. Specify the range in set notation in each case.
(a) $f(z)=z^{2}$
(b) $f(z)=z^{-1}$
(c) $f(z)=z^{\frac{1}{2}}$

Problem 5

Sketch the image of these regions
(a) $\{z:-1<\operatorname{Re} z<2\}$
(b) $\left\{z:-1<\operatorname{Re} z<2 \wedge 0<\operatorname{Im} z<\frac{\pi}{2}\right\}$
under each of the following mapping function. Represent the range of the function in set notation in each case.

Tip: First map the boundary of domain to $u-v$. Then choose an interior point of the domain, map it to $u-v$ plane and see on what side of the boundary does it get mapped in the $u-v$ plane.
(i) $f(z)=z-2$
(iii) $f(z)=i z$
(ii) $f(z)=3 z$
(iv) $f(z)=e^{i z}$

Problem 6

Sketch the image of each of the following functions defined on given domains and write down the range in set notation.

Tip: First map the boundary of domain to $u-v$. Then choose an interior point of the domain, map it to $u-v$ plane and see on what side of the boundary does it get mapped in the $u-v$ plane.
(a) $f(z)=z^{2}$, defined on $\left\{z:|z|<4 \wedge|\operatorname{Arg} z|<\frac{\pi}{12}\right\}$
(b) $f(z)=\frac{1}{z}$, defined on $\left\{z: \frac{1}{4}<|z|<4\right\}$
(c) $f(z)=e^{-z}$ defined on $\left\{z:-2<\operatorname{Re} z<2 \wedge-\frac{\pi}{6}<\operatorname{Im} z<\frac{\pi}{6}\right\}$

