WORKSneet 3	Vorkshe	et 3
-------------	---------	------

Fri, Feb 15

Spring 2019

Roll# Student 1:	Roll $\#$ Evaluator 1:
Roll# Student 2:	Roll# Evaluator 2:

Problem 1

(a) $\{z \in \mathbb{C} : |z| < 1 \lor |z - 4i| < 3\}$ (b) $\{z \in \mathbb{C} : -\pi < \text{Arg } z < \pi\}$

For each of the above sets, answer the following.

- (i) Sketch the set in the complex plane.
- (ii) Describe the boundary of the set using the set-builder notation.
- (iii) Describe the interior of the set using the set-builder notation.
- (iv) Is the set open or closed? Explain.
- (v) If the set is open, is it connected? Explain.

Problem 2

For each of the following functions, describe its domain in \mathbb{C} , i.e. set of values of z for which the function is defined.

(a) $f(z) = z + 1$	(e) $f(z) = \operatorname{Arg} \frac{1}{z}$
(b) $f(z) = \overline{z}$	(f) f(x) ²
(c) $f(z) = \frac{1}{z - 1 - 6i}$	(f) $f(z) = \frac{z}{z + \overline{z}}$
(d) $f(z) = \frac{1}{z^2 + 2z + 2}$	(g) $f(z) = \frac{1}{1 - z ^2}$

Problem 3

Convert the following functions in the form f(z) = u(x, y) + iv(x, y).

- (a) f(z) = z + i (d) $f(z) = \frac{1}{z}$
- (b) f(z) = 5iz (e) $f(z) = -iz^2$
- (c) $f(z) = z + i\overline{z}$ (f) $f(z) = e^{2iz}$

Problem 4

Sketch the region onto which the set $\left\{z: |z| < 2 \text{ and } 0 \leq \text{Arg } z \leq \frac{\pi}{4}\right\}$ is mapped by each of the following functions. Specify the range in set notation in each case.

(a)
$$f(z) = z^2$$
 (b) $f(z) = z^{-1}$ (c) $f(z) = z^{\frac{1}{2}}$

Problem 5

Sketch the image of these regions

- (a) $\{z: -1 < \text{Re } z < 2\}$
- (b) $\{z: -1 < \text{Re } z < 2 \land 0 < \text{Im } z < \frac{\pi}{2}\}$

under each of the following mapping function. Represent the range of the function in set notation in each case.

Tip: First map the boundary of domain to u-v. Then choose an interior point of the domain, map it to u-v plane and see on what side of the boundary does it get mapped in the u-v plane.

(i) f(z) = z - 2(ii) f(z) = 3z(iv) $f(z) = e^{iz}$

Problem 6

Sketch the image of each of the following functions defined on given domains and write down the range in set notation.

Tip: First map the boundary of domain to u-v. Then choose an interior point of the domain, map it to u-v plane and see on what side of the boundary does it get mapped in the u-v plane.

- (a) $f(z) = z^2$, defined on $\{z : |z| < 4 \land |\text{Arg } z| < \frac{\pi}{12}\}$
- (b) $f(z) = \frac{1}{z}$, defined on $\{z : \frac{1}{4} < |z| < 4\}$
- (c) $f(z) = e^{-z}$ defined on $\left\{z : -2 < \operatorname{Re} z < 2 \land -\frac{\pi}{6} < \operatorname{Im} z < \frac{\pi}{6}\right\}$