MT240: Complex Variables and Transforms

		Worksheet 14	I U The second second
	Fri, May 10		Spring 2019
Roll# Student 1:		Roll# Evaluator 1:	
Roll	# Student 2:	Roll# Evaluator 2:	

...

Problem 1

For each of the following functions,

- (a) 2(c) $2\delta(t-5)$ (e) $2\cos(3t) + 4$ (g) $2\delta(t) * \Box_4(t)$ (b) $2\delta(t)$ (d) 2u(t+5)(f) $2\sin(3t) 4$ (h) $2\delta(t-5) * \Box_4(t)$
 - (i) Sketch its graph in the time domain.
 - (ii) Find its Fourier transform.
- (iii) Sketch its magnitude and phase spectrum.

Problem 2

Find and sketch the inverse Fourier transform of the following functions. [You can use the Fourier transform table in the 'Notes'].

(a) $F(\omega) = \frac{1}{3 + i\omega}$ (b) $F(\omega) = \frac{1}{9 + \omega^2}$ (c) $F(\omega) = 2\pi \left(\delta(\omega + 10) + \delta(\omega - 10)\right)$ (d) $F(\omega) = \frac{4}{i\omega}$

Problem 3

Sketch the following functions in (a) and (b). Then sketch their convolution product in (c).

(a)
$$\sum_{k=-\infty}^{\infty} \delta(t-2k)$$

(b) $p_2(t)$

(c)
$$\sum_{k=-\infty}^{\infty} \delta(t-2k) * p_2(t)$$