Roll\# Student 1:
Roll\# Evaluator 1:

Roll\# Student 2:

Problem 1

Consider the function $f(t)=e^{-2|t|}$ for $-\infty<t<\infty$, and its graph is drawn in the following figure.

Figure 1
(a) Based on function's properties, predict whether its Fourier transform is real, pure imaginary or complex. [2 Minutes]
(b) Based on function's properties, predict whether its amplitude and phase spectra are even or odd. [2 Minutes]
(c) Evaluate its Fourier transform $F(\omega)$. [10 Minutes]
(d) Sketch the amplitude and phase spectrum of $F(\omega)$. [You may use Desmos or Wolfram Alpha]. [10 Minutes]
(e) Using the properties of Fourier transform and your answer to (c), find the Fourier transforms of the functions $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$ that are graphed on the next page. for each figure, $f(t)$ is drawn on the left for reference. You are only given the following information. [30 Minutes]

- $f_{3}(t)=e^{-|t|}$
- $f_{4}(t)=f_{3}^{\prime}(t)$
- $f_{5}(t)=\frac{4}{t^{2}+4}$
(f) Plot the amplitude and phase spectra of each of the functions in (e). [20 Minutes]

2 of 2

