

MT240: Complex Variables and Transforms				
Course Code	MT240 Semester 4th			
Credit Hours	3	Term	Spring 2019	
Instructor	Usama Bin Sikandar	Pre-regs	Calculus and Analytic Geometry	
Office	Room 9, 4th floor	E-mail	usama.sikandar@itu.edu.pk	
Department	Electrical Engineering	Discipline Mathematics		
Teaching Assistant	Arslan Shahid	Office Hours	Thu & Fri, 12 - 1 PM	

Course Description

The course focuses on the basic geometry, algebra and calculus of complex variables and complex functions, for their applications in evaluating and analyzing Fourier and Laplace transforms.

Course Outcomes/Objectives

By the end of the course, the students must be able to

- Demonstrate a strong understanding of why complex numbers are important
- Visualize the arithmetic of complex numbers in Cartesian and polar forms
- Determine whether a complex function is analytic
- Calculate the map of a complex analytic function
- Calculate the derivative of an analytic function
- Calculate complex integrals including treatment of residues
- Evaluate integrals related to Fourier series and Fourier and Laplace transforms for standard functions
- Sketch the graphs of magnitude and phase spectra of Fourier transforms
- Apply the properties of Fourier and Laplace transforms to transform related functions
- Understand the issues of convergence of Fourier and Laplace transforms
- Evaluate and sketch the graph of convolution of two continuous functions

Books	
Text Books:	1. Complex Variables and Applications (8th ed) by J. W. Brown and R. V. Churchill
	2. Fourier and Laplace Transforms by R. J. Beerends, H. G. ter Morsche, J. C. van den Berg
	and E. M. van de Vrie. Cambridge University Press (2003)
Reference	3. Advanced Engineering Methods (10th edition) by E. Kreyszig, H. Kreyszig and E.
Books:	Norminton.
	4. Fundamentals of Complex Analysis with Applications to Engineering and Science, by E. B.
	Saff and A. D. Snider.

Course Assessment Distribution:		
Quizzes: 20 % (15% for 14 out of 15 recitation worksheets, 5% for 5 out of 6 quizzes)		
Assignments:	15 % (6 homework assignments)	
Midterm Exam:	25 %	
Final Exam:	40 %	

Weekly Lecture Breakdown				
Week 1:	Complex Plane	Week 10:	Fourier Series	
Week 2:	Complex Arithmetics	Week 11:	Fourier Series Properties	
Week 3:	Complex Functions	Week 12:	Fourier Transform	
Week 4:	Cauchy-Riemann Equations	Week 13:	Fourier Transform Properties	
Week 5:	Mobius Transformation	Week 14:	Spectral Analysis	
Week 6:	Complex Integration	Week 15:	Convolution	
Week 7:	Cauchy's Integral Theorems	Week 16:	Laplace Transform	
Week 8:	Residue Integration	Week 17:	Prep week	
Week 9:	Midterm exam	Week 18:	Final exam	

Chapter	Topics	Lectures
Churchill	Complex Variable	4
Ch 1	 Fundamental theorem of algebra* 	
	Mathematical Convenience	
	 Applications 	
*Notes on	Complex plane	
Classroom	Cartesian and polar forms	
	Conjugate root theorem*	
	Complex arithmetic	
	 nth roots of a complex number 	
	 Planar sets and regions in the complex plane 	
	Open, closed, connected, bounded sets	
Churchill	Complex Functions	5
Ch 2, 3, 9	 Domain, co-domain and range in the complex plane 	
	 Mapping from x-y plane to u-v plane 	
	Limits and continuity	
	Complex exponential and trigonometric functions	
	 Polynomials and zeros 	
	Derivative and analyticity	
	Cauchy-Riemann equations	
	Harmonic functions	
	Conformal mapping	
	Mobius transformation	
	Complex Integration	3
Churchill	Paths and contours	
Ch 4	Path parameterization	
	Contour integration	
	Cauchy's integral theorem	
	Cauchy's integral formulas	
	Residue Theory	4
	• Residues	
Churchill	Cauchy's residue theorem	
Ch 5, 6	Residue integration	
	Mid Term Exam	

Beerends	Fourier Series	4
Ch 3, 4	Complex Fourier series	
	Frequency domain spectrum	
	 Fundamental theorem of Fourier series 	
	Properties of Fourier Series	
	Parseval's identity	
	Fourier Transform	6
Beerends	Fourier series to Fourier transform	
Ch 6, 7	Frequency domain spectrum	
	Fundamental theorem of Fourier transform	
	Inverse Fourier transform	
	Properties of Fourier Transform	
	Parseval's theorem	
	Fourier transforms involving Dirac delta function	
	• Convolution	
	Laplace Transform	4
Beerends	• s-domain	
Ch 12, 13	Initial and final value theorems	
	Properties of Laplace transform	
	Laplace transform of periodic functions	
	Bilateral (double-sided) Laplace transform	
	Region of convergence	
	Final Exam	

Cours	Course Learning Objectives (CLOs):			
CLO	Description	BT	PLOs	
1	Understand the algebra and geometry of complex numbers	C2	1, 12	
2	Understand the techniques of complex variable calculus	C2	1, 12	
3	Apply these techniques to evaluate Fourier and Laplace transforms of standard functions, analyze their frequency spectra and sketch graphs	C4	1, 2, 5	

Mapping of CLOs to Assessment Modules:			
Assessments	CLO1	CLO2	CLO3
Quizzes	✓	✓	✓
Assignments	✓	✓	✓
MidTerm	✓	✓	
Final Exam	✓	✓	✓

Mapping of CLOs to Program Learning Outcomes (PLOs):			
PLOs/CLOS	CLO1	CLO2	CLO3
PLO 1 (Engineering Knowledge)	✓	✓	✓
PLO 2 (Problem Analysis)			✓
PLO 3 (Development of Solutions)			
PLO 4 (Investigation)			
PLO 5 (Modern tool usage)			✓
PLO 6 (The Engineer and Society)			
PLO 7 (Environment and Sustainability)			
PLO 8 (Ethics)			
PLO 9 (Individual and Team Work)			
PLO 10 (Communication)			
PLO 11 (Project Management)			
PLO 12 (Lifelong Learning)	✓	√	

Grading Policy:	
Quiz Policy:	There will be 6 quizzes in this course. Quizzes will take place in a recitation right after the submission of a homework assignment and will be totally based on the problems in that assignment. So to score well in quizzes, students must spend sufficient time solving the problems individually. Grading for quizzes will generally be on a scale of 0 to 10. Best 5 quizzed will be counted towards the final grade.
Assignment Policy:	In order to develop a comprehensive understanding of the subject and push the students out of their comfort zone in the subject, challenging problems will be assigned as homework. The students must do the homework individually . Copying of homework or any kind of plagiarism is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee and a straight-away zero . Homework submitted late by one day will be penalized by 20% , but after that nothing will be accepted . All homework assignments will count towards the total (no 'best-of' policy). The problems in the assignment are meant to be challenging to raise the students' caliber in the subject, give them confidence and enable them to prepare not just the exams but the real world scenarios.
Plagiarism:	The course has a zero-tolerance policy towards plagiarism . While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the plagiarism policy will lead to strict penalties including a failing grade in the course and referral to the Disciplinary Committee for a strict action, which may possibly lead to failing grades in all the courses of the semester.
Grading	Relative grading