
MT240: Complex Variables and Transforms

Definitions and Theorems
Spring 2019

1 Complex Variable

1.1 Roots of a polynomial

A root or zero of a polynomial P (z) is a number zi ∈ C for which P (zi) = 0.

Theorem 1.1 (Fundamental Theorem of Algebra). A polynomial P (z) of degree n has n roots, some
of them possibly degenerate (repeated).

Theorem 1.2 (Conjugate Root Theorem). If a polynomial P (z) with real coefficients has a root zo =
a+ bi (with a, b ∈ R, b 6= 0) then zo = a− bi is also a root of P (z).

1.2 Circle of radius r, centered at zo

Set of all points z at a distance r from zo.

Kr(zo) = {z ∈ C : |z − zo| = r}

1.3 Open disk of radius r, centered at zo

Set of all points z at a distance less than r from zo.

Br(zo) = {z ∈ C : |z − zo| < r}

1.4 Bounded set

A set E ⊂ C is bounded if there exists a number R > 0 such that E ⊂ BR(0). If no such R exists then
E is called unbounded.

1.5 Interior point

A point z is an interior point of a set E ⊂ C if there exists some r > 0 such that Br(z) ⊂ E.

The interior of E, represented as int(E), is the set of all interior points of E.

1.6 Boundary point

A point z is a boundary point of E if every Br(z) for r > 0 contains a point in E and a point not in E.

The boundary of the set E, represented as ∂E, is the set of all boundary points of E.

The closure of E, represented as cl(E), is the set E together with all of its boundary points, i.e.,
cl(E) = E ∪ ∂E.
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1.7 Open set

A set E is open if all of its points are its interior points.

1.8 Closed set

A set E is closed if it contains all of its boundary points.

1.9 Theorem about connectedness of open sets

An open set E is connected if and only if any two points in E can be joined in E by successive line
segments.

1.10 Extended Complex Plane

The extended complex plane Ĉ consists of the entire complex plane C together with the point at infinity,
i.e. Ĉ = C ∪ {∞}.
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2 Complex Functions

A complex function f : C→ C is a rule that assigns to each element in its domain D one and only one
element in a set E, the range of f .

For the complex variable z = x+ iy,

w = f(z) = u(x, y) + iv(x, y).

2.1 Limit of a function

Let f be a function defined in some neighborhood of zo ∈ C, except possibly at zo itself.

Limit of f(z) as z → zo is the number wo

lim
z→zo

f(z) = wo

if for every ε > 0 there exists a δ > 0 such that |f(z)− wo| < ε whenever 0 < |z − zo| < δ.

2.2 Continuous function

A function f is continuous at a point zo in its domain if the limit

lim
z→zo

f(z) = f(zo).

2.3 Differentiable function

A function f is complex differentiable at zo ∈ C if the limit

lim
z→zo

f(z)− f(zo)

z − zo

exists. This limit is often referred to as f ′(zo) i.e. the derivative of f at zo.

Another way to represent this limit is

lim
∆z→0

f(zo + ∆z)− f(zo)

∆z
,

where ∆z = z − zo.

This is the fundamental definition of a derivative and is called ‘derivative from first principles’.

Theorem 2.1 (Differentiability implies continuity). If a function f is differentiable at zo, then it is
continuous at zo.

This theorem also implies that if f is discontinuous at a point zo, then is not differentiable at this point.
However, this does not mean that a function continuous at a point zo is necessarily differentiable at zo.
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2.4 Partial Derivative

A partial derivative is defined as derivative of a function f(x1, x2, ..., xn) of multiple variables when all
the variables, except the variable of interest, are held constant during the differentiation.

Partial derivative of f with respect to variable xi is defined as

∂f

∂xi
= lim

∆xi→0

f(x1, ..., xi + ∆xi, ..., xn)− f(x1, ..., xi, ..., xn)

∆xi

We will use the short-hand notation fx to represent the partial derivative
∂f

∂x
.

2.5 Analytic function

A function f is said to be analytic (or holomorphic) on an open set E ⊂ C when it is differentiable at
each point z ∈ E.

Theorem 2.2. If f(z) = u(x, y) + iv(x, y) is analytic at zo ∈ C, then the partial derivatives ux, vx, uy
and vy exist at zo and satisfy

ux = vy, (2.1)

uy = −vx. (2.2)

These are known as Cauchy-Riemann equations and can also be represented as

fx = −ify. (2.3)

Also, if f is analytic on domain D then its derivative

f ′(z) = fx = −ify. (2.4)

Theorem 2.3. Let f(z) = u(x, y) + iv(x, y) be defined on a domain D ∈ C. The function f is analytic
on D if and only if its first partial derivatives ux, vx, uy and vy are continuous on D and satisfy Cauchy-
Riemann equations.

Theorem 2.4. If f is analytic on a domain D, and if f ′(z) = 0 for all z ∈ D, then f is constant in D.

2.6 Polar Form of Cauchy-Riemann Equations

If f(z) = u(r, θ) + iv(r, θ) is analytic at zo ∈ C, then the partial derivatives ur, uθ, vr and vθ exist at zo
and satisfy

rur = vθ, (2.5)

uθ = −rvr. (2.6)

Also, if f is analytic on the domain D then its derivative

f ′(z) = e−iθfr = −ie
−iθ

r
fθ. (2.7)
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2.7 Singular point

If f is not analytic at a point zo ∈ C but analytic at some point in every neighborhood of zo, then zo is
called a singular point (or a singularity) of f .

2.8 Harmonic functions

A real-valued function f(x, y) is said to be harmonic in a domain D if all its second-order partial
derivatives fxx, fyy and fxy are continuous in D and if, at each point of D, f satisfies Laplace equation,

∂2f

∂x2
+
∂2f

∂y2
= 0.

In polar coordinates, for a harmonic function f(r, θ), the Laplace equation can be written as

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
= 0.

Theorem 2.5. If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then each of the functions u(x, y)
and v(x, y) is harmonic in D.

2.9 Elementary Functions

2.9.1 Rational Function

R(z) =
b0 + b1z + b2z

2 + · · ·+ bmz
m

a0 + a1z + a2z2 + · · ·+ anzn

Roots of the numerator polynomial are called zeros and the roots of the denominator polynomial are
called poles of the function. If the order of the numerator polynomial is m and the order of the
denominator polynomial is n, there are m zeros and n poles of the rational function. In terms of zeros
and poles, the rational function can be represented in the factorized form as follows,

R(z) = k
(z − z1)(z − z2) · · · (z − zm)

(z − p1)(z − p2) · · · (z − pn)
,

where k =
bm
an

.

2.9.2 Exponential Function

f(z) = ez for z ∈ C

2.9.3 Complex Trigonometric Functions

cos z =
eiz + e−iz

2
for z ∈ C

sin z =
eiz − e−iz

2i
for z ∈ C
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2.9.4 Logarithm Function

The principal branch of the logarithm function is the inverse of the exponential function f(z) = ez for
{z ∈ C : −π < Im z ≤ π}. It is defined as follows.

Log z = ln |z|+ iArg z for {z ∈ C : z 6= 0}

The function is not analytic at the origin and the negative real-axis, i.e., {z ∈ C : Re z ≤ 0 ∧ Im z = 0}.

2.10 The Inverse Function

Given a function f(z) that maps domain D to R. Its inverse function f−1(z) is defined by

f−1(f(z)) = f(f−1(z)) = z,

and maps R to D.

Theorem 2.6. A function f(z) has an inverse f−1(z) if and only if it is bijective (one-to-one and
onto).

However, inverse functions are commonly defined for elementary functions that are multivalued in the
complex plane. In such cases, the inverse relation holds on some subset of the complex plane. But, over
the whole plane, either or both parts of the identity f−1(f(z)) = f(f−1(z)) = z may fail to hold. For
example, consider the function log z.

Theorem 2.7. If f(z) is analytic at zo and f ′(zo) 6= 0, then there is an open disk D centered at zo such
that f(z) is one-to-one on D.

Theorem 2.8 (Inverse function theorem). Suppose that f(z) is a function analytic one some domain
D and maps it to R, and there exists a continuous function g(z) with domain R such that g(f(z)) = z
for all z ∈ D (which simply means g = f−1). Then g is analytic in R, and

g′(z) =
1

f ′(g(z))
for z ∈ R.

Theorem 2.9 (Inverse function theorem). If f(z) is analytic at zo and f ′(zo) 6= 0, then f−1(w) is
analytic at wo and

df−1

dw
(wo) =

1

df

dz
(zo)

where wo = f(zo).

2.11 Möbius transformation

A Möbius transformation is a function f : Ĉ→ Ĉ of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C such that ad− bc 6= 0.

Also known as fractional linear transformation or bilinear transformation, it is a bijective map in the
extended complex plane (Ĉ). Every Möbius transformation maps circles and lines to circles or lines.
The composition of two Möbius transformations is a Möbius transformation. The inverse of a Möbius
transformation is also a Möbius transformation.
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Theorem 2.10. Given three distinct points z1, z2, z3 ∈ Ĉ and three distinct points w1, w2, w3 ∈ Ĉ, there
exists a unique Möbius transformation f such that f(z1) = w1, f(z2) = w2, and f(z3) = w3.

Every Möbius transformation is the composition of maps of the type

z 7→ az rotation and dilation (scaling)

z 7→ z + b translation

z 7→ 1

z
inversion

The linear transformation z 7→ az + b, which is a composition of rotation, dilation and translation, is
called Affine transformation. So a Möbius transformation is a composition of Affine transformation and
inversion.
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3 Complex Integration

If γ : [a, b]→ C is a smooth curve and f is continuous on γ, then

∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

Theorem 3.1 (Independence of parameterization). Let γ : [a, b] → C be a smooth curve, and let
β : [c, d] → C be another smooth parameterization of the same curve, given by β(s) = γ(h(s)), where
h : [c, d]→ [a, b] is a smooth bijection. Let f be a complex-valued function, defined on γ. Then∫

β
f(z)dz =

∫
γ
f(z)dz

3.1 Primitive

Let D ⊂ C be a domain, and let f : D → C be a continuous function. A primitive of f on D is an
analytic function F : D → C such that F ′ = f on D.

Theorem 3.2 (Fundamental theorem of calculus for complex analytic functions). If f is continuous
on a domain D and if f has a primitive F in D, then for any curve γ : [a, b]→ D we have

∫
γ
f(z)dz = F (γ(b))− F (γ(a)).

Theorem 3.3 (Goursat’s theorem). Let D be a simply connected domain in C, and let f be analytic in
D. Then f has a primitive in D. Moreover, a primitive is given explicitly by picking zo ∈ D and letting

F (z) =

∫ z

zo

f(ẑ)dẑ

where the integral is taken on an arbitrary curve in D from zo to z.

3.2 Length of a curve

Length of a curve γ : [a, b]→ C.

length(γ) =

∫ b

a
|γ′(t)|dt

3.3 Cauchy’s integral theorem

Theorem 3.4 (Cauchy’s integral theorem). Let D be a simply connected domain in C, and let f be
analytic in D. Let γ : [a, b]→ D be a piecewise smooth and closed curve in D (i.e. γ(b) = γ(a)). Then∮

γ
f(z)dz = 0.

Corollary 3.4.1. Let γ1 and γ2 be two simple closed curves (i.e. neither of the curves intersects itself),
oriented counterclockwise, where γ2 is inside γ1. If f is analytic in a domain D that contains both curves
as well as the region between them, then∮

γ1

f(z)dz =

∮
γ2

f(z)dz
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Theorem 3.5 (Cauchy’s Integral Formula). Let D be a simply connected domain, bounded by a piecewise
smooth curve γ, and let f be analytic in a set U that contains the closure of D (i.e. D and γ). Then∮

γ

f(z)

z − zo
dz = 2πif(zo) for all zo ∈ D.

For higher powers of (z − zo), we have Cauchy’s Integral formula for derivatives as follows,∮
γ

f(z)

(z − zo)k+1
dz =

2πi

k!
f (k)(zo) for all zo ∈ D.

Here is another amazing theorem which follows from Cauchy’s Integral formula.

Theorem 3.6. If f is analytic in an open set U , then f ′ is also analytic in U .

3.4 Isolated singularities

A point zo is an isolated singularity of f is f is analytic in a punctured disk {0 < |z− zo| < r} centered
at zo.

3.4.1 Types of isolated singularities

Suppose zo is an isolated singularity of an analytic function f . Then the singularity zo is

• removable if lim
z→z0

(z − z0)f(z) = 0

• a pole of order N if lim
z→z0

(z − z0)Nf(z) = c, where N ∈ Z+ and c ∈ C is a non-zero constant.

• essential (out of the scope of this course).

Theorem 3.7 (Residue theorem). Let D be a simply connected domain, and let f be analytic in D,
except for isolated singularities. Let γ be a simple closed curve in D (oriented counterclockwise), and
let z1, z2, . . . , zn be isolated singularities of f that lie inside of γ. Then∮

γ
f(z)dz = 2πi

n∑
k=1

Res(f, zk).

If zk is a removable singularity or a simple pole (order N = 1), then

Res(f, zk) = lim
z→zk

(z − zk)f(z),

and if zk is a pole of order N > 1, then

Res(f, zk) =
1

(N − 1)!
lim
z→zk

dN−1

dzN−1
(z − zk)Nf(z)
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4 Transforms

4.1 Complex Fourier Series

Let f(t) be a periodic function with period T and fundamental frequency ω0 = 2π
T . Then the complex

Fourier coefficients cn of f(t), whenever they exist, are defined by

cn =
1

T

∫ T
2

−T
2

f(t)e−inω0tdt for n ∈ Z.

When cn are the complex Fourier coefficients of the periodic function f(t) with Complex Fourier series
period T and fundamental frequency ω0 = 2π

T , then the complex Fourier series of f(t) is defined by

f(t) =
∞∑

n=−∞
cne

inω0t,

4.1.1 Trigonometric Fourier series

For a real-valued piecewise smooth periodic function f(t), its Fourier series can also be represented as
follows

f(t) =
a0

2
+
∞∑
n=1

an cosnω0t+
∞∑
n=1

bn sinnω0t,

where

an =
2

T

∫ T
2

−T
2

f(t) cosnω0t dt, bn =
2

T

∫ T
2

−T
2

f(t) sinnω0t dt

Theorem 4.1 (Fundamental Theorem of Fourier series). Suppose that f(t) is a piecewise smooth peri-
odic function on R with Fourier series coefficients cn. Then for any t ∈ R

∞∑
n=−∞

cne
inω0t =

1

2
(f(t+) + f(t−)) .

Theorem 4.2 (Uniqueness Theorem). Let f(t) and g(t) be piecewise smooth periodic functions with
Fourier series coefficients cn and dn. If cn = dn for all n ∈ R then f(t) = g(t) at all points where f(t)
and g(t) are continuous.

4.1.2 Parseval’s identity

1

T

∫ T
2

−T
2

|f(t)|2dt =

∞∑
n=−∞

|cn|2

where the integral
1

T

∫ T
2

−T
2

|f(t)|2dt is called the average power of f(t). So the average power in a

piecewise smooth periodic function f(t) per time period is equal to the absolute squared sum of its
Fourier series coefficients.
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4.1.3 Properties of Complex Fourier Series

Property Function Fourier Series Coefficients

Linearity af(t) + bg(t) acn + bdn

Conjugation f(t) c−n

Time shift f(t− t0) e−inω0t0cn

Time reversal f(−t) c−n

4.2 Fourier Transform

The Fourier transform is the generalization of complex Fourier series in the limit as T → ∞. For a
given function f(t), its Fourier transform F (ω) for ω ∈ R is defined as

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt.

Once we have F (ω), we can transform back to f(t) using the Fourier inversion formula, also known as
the inverse Fourier transform, using the Fourier integral as follows

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω.

Theorem 4.3. Suppose that f(t) is an absolutely integrable function, i.e.∫ ∞
−∞
|f(t)| dt <∞,

and is piecewise smooth on every bounded interval. Then its Fourier transform F (ω) exists.

Theorem 4.4 (Fundamental theorem of Fourier integral). Let f(t) be an absolutely integrable and
piecewise smooth function on R and let F (ω) be the Fourier transform of f(t). Then the Fourier
integral converges for each t ∈ R as

1

2π

∫ ∞
−∞

F (ω)eiωtdω =
1

2
(f(t+) + f(t−)).

Theorem 4.5 (Parseval’s Theorem). Let f(t) be a piecewise smooth square integrable function. Then∫ ∞
−∞
|f(t)|2 dt =

1

2π

∫ ∞
−∞
|F (ω)|2dω.

The integral

∫ ∞
−∞
|f(t)|2 dt is called total energy of the function. Square integrable functions have finite

energy and are called ‘energy signals’.

According to the theorem, the total energy of a function f(t) can be calculated by integrating either
power across time or spectral power across frequency, where power p in a function f at time t is defined
as p(t) = |f(t)|2.
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4.2.1 Properties of Fourier Transform

Property Function Fourier Transform

Linearity af(t) + bg(t) aF (ω) + bG(ω)

Conjugation f(t) F (−ω)

Time shift f(t− t0) e−iωt0F (ω)

Frequency shift eiω0tf(t) F (ω − ω0)

Time scaling f(ct)
1

|c|
F
(ω
c

)
Time reversal f(−t) F (−ω)

Differentiation in time domain f (n)(t) (iω)nF (ω)

Differentiation in frequency domain (−it)nf(t) F (n)(ω)

Duality F (t) 2πf(−ω)

Convolution in time domain f(t) ∗ g(t) F (ω)G(ω)

Convolution in frequency domain f(t)g(t)
1

2π
F (ω) ∗G(ω)
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4.2.2 Fourier Transform Table

Rectangle, triangle and pulse functions are defined in class.

Function Fourier Transform

Rectangle ua(t)
a sin(aω2 )

aω
2

Triangle ∧a(t)
a sin2(aω2 )

(aω2 )2

Pulse pa(t) −i
a sin2(aω4 )

aω
4

Absolute-timed Exponential e−a|t|, a > 0
2a

a2 + ω2

Causal Exponential e−atu(t), a > 0
1

a+ iω

Gaussian e−at
2

√
π

a
e−

ω2

4a

Dirac-delta function (Unit impulse) δ(t) 1

Unit step function u(t) πδ(ω) +
1

iω

Sign function sgn(t)
2

iω

Complex exponential eiω0t 2πδ(ω − ω0)

Cosine cosω0t π(δ(ω + ω0) + δ(ω − ω0))

Sine sinω0t iπ(δ(ω + ω0)− δ(ω − ω0))

Impulse train
∞∑

k=−∞
δ(t− kT )

2π

T

∞∑
k=−∞

δ

(
ω − 2π

T
k

)
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4.3 Laplace Transform

For a given function f(t), its Laplace transform F (s) for s ∈ C is defined as

F (s) =

∫ ∞
0−

f(t)e−stdt,

where variable s = σ + iω for σ, ω ∈ R.

4.3.1 Absolute Convergence

In general, the absolute convergence of an indefinite integral also implies its own converges. So if the
Laplace transform integral of a function f(t) converges absolutely, then the integral itself converges and
the Laplace transform of f(t) exists.

For a given causal function f(t), there exists a number σ ∈ R with −∞ ≤ σ ≤ ∞ such that the Laplace
transform integral ∫ ∞

0
f(t)e−stdt

is absolutely convergent i.e.

0 ≤
∣∣∣∣∫ ∞

0
f(t)e−stdt

∣∣∣∣ <∞
for all s ∈ C with Re s > σ and not absolutely convergent for all s ∈ C with Re s < σ. The region Re
s > σa is called the region of absolute convergence of f(t), and the value Re s = σ is called abscissa of
absolute convergence.

It is important to note that the absolute integral reduces to∣∣∣∣∫ ∞
0

f(t)e−stdt

∣∣∣∣ =

∫ ∞
0
|f(t)| e−σtdt

4.3.2 Exponential Order Functions

The functions that do not grow faster than the exponential function eσt for t ≥ 0 are called exponential
order functions. The Laplace transform of an exponential order function exists because the Laplace
transform integral absolutely converges for such functions.

There are two conditions to check if a function is of exponential order.

(1) |f(t)|e−st < M for some M > 0

(2) lim
t→∞

f(t)e−st = 0
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4.3.3 Properties of Laplace Transform

Property Function Laplace Transform

Linearity af(t) + bg(t) aF (s) + bG(s)

Time shift f(t− t0) e−t0sF (ω)

s-shift es0tf(t) F (s− s0)

Scaling f(ct), c > 0
1

c
F
(s
c

)
Convolution in time domain f(t) ∗ g(t) F (s)G(s)

4.3.4 Table of Laplace Transform

Function Laplace Transform

Dirac-delta δ(t) 1

Unit step u(t)
1

s

Exponential eat
1

s− a

Complex exponential eibt
1

s− ib

Cosine cos bt
s

s2 + b2

Sine sin bt
b

s2 + b2

Polynomial tn
n!

sn+1

First time-derivative f ′(t) sF (s)− f(0−)

Second time-derivative f ′′(t) s2F (s)− sf(0−)− f ′(0−)

nth time-derivative f (n)(t) snF (s)−
n−1∑
k=0

sn−k−1f (k)(0−)

Time integration

∫ t

0−

f(τ)dτ
F (s)

s
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