Problem 1

For each of the following functions
(a) $f(z)=\frac{z}{(z-1)(z-2)(z+2)^{2}}$
(i) Find all the singular points.

Singular points are $z=1$ and $z= \pm 2$
(ii) Classify each singular point as removable, pole (multiplicity n) or essential. Note: A simple pole has multiplicity $n=1$.
At $z=1$

$$
\lim _{z \rightarrow 1} \frac{z}{(z-2)(z+2)^{2}}=-\frac{1}{9}
$$

At $z=2$

$$
\lim _{z \rightarrow 2} \frac{z}{(z-1)(z+1)^{2}}=\frac{1}{8}
$$

Simple Pole at $z=1$ and $z=2$
At $z=-2$

$$
\lim _{z \rightarrow-2} \frac{z}{(z-1)(z-2)}=-\frac{1}{6}
$$

Pole of multiplicity 2 at $z=-2$
(iii) Find the residue corresponding to each singular point.

At $z=1$

$$
\operatorname{Res}(f, 1)=\lim _{z \rightarrow 1} \frac{z}{(z-2)(z+2)^{2}}=-\frac{1}{9}
$$

At $z=2$

$$
\operatorname{Res}(f, 2)=\lim _{z \rightarrow 2} \frac{z}{(z-1)(z+1)^{2}}=\frac{1}{8}
$$

At $z=-2$

$$
\begin{aligned}
& \operatorname{Res}(f,-2)=\frac{d}{d z}\left((z-(-2))^{2} f(z)\right) \\
& \lim _{z \rightarrow-2} \frac{d}{d z}\left(\frac{z}{(z-1)(z-2)}\right)=-\frac{1}{72}
\end{aligned}
$$

(iv) Evaluate the integral $\oint_{|z|=5} f(z) d z$.

$$
\begin{aligned}
& \oint_{|z|=5} f(z) d z \\
& \begin{aligned}
\oint_{|z|=5} f(z) d z & =2 \pi i(\operatorname{Res}(f, 1)+\operatorname{Res}(f, 2)+\operatorname{Res}(f,-2) \\
& =2 \pi i\left(-\frac{1}{9}+\frac{1}{8}-\frac{1}{72}\right)
\end{aligned} \\
& \oint_{|z|=5} f(z) d z=0
\end{aligned}
$$

(b) $f(z)=\frac{\cos 2 z-1}{2 z(z+i)}$
(i) Singular points are $z=0$ and $z=-i$
(ii) Classify each singular point as removable, pole (multiplicity n) or essential. Note: A simple pole has multiplicity $n=1$.
At $z=0$

$$
\lim _{z \rightarrow 0} \frac{\cos (2 z)-1}{(2)(z+i)}=0
$$

Removable at $z=0$ At $z=-i$

$$
\lim _{z \rightarrow-i} \frac{\cos (2 z)-1}{2 z}=-\frac{\cos (2 i)-1}{2 i}
$$

Simple Pole at $z=-i$
(iii) Find the residue corresponding to each singular point.

At $z=0$

$$
\operatorname{Res}(f, 0)=0
$$

At $z=-i$

$$
\operatorname{Res}(f, 0)=\lim _{z \rightarrow-i} \frac{\cos (2 z)-1}{(2 z)}=-\frac{\cos (2 i)-1}{2 i}
$$

(iv) Find the residue corresponding to each singular point.

$$
\begin{aligned}
& \oint_{|z|=5} f(z) d z \\
& \begin{aligned}
\oint_{|z|=5} f(z) d z & =2 \pi i(\operatorname{Res}(f, 0)+\operatorname{Res}(f,-i) \\
& =2 \pi i\left(-\frac{\cos (2 i)-1}{2 i}\right)
\end{aligned} \\
& \oint_{|z|=5} f(z) d z=-\pi(\cos (2 i)-1)
\end{aligned}
$$

Problem 2

(a) Consider the periodic function shown in the following figure.

(i) Find its time period T and angular frequency ω_{0}.
$T=4 \pi$ and $\omega_{0}=\frac{1}{2}$
(ii) Is it an even function or an odd function?

Odd function, as $f(-t)=-f(t)$
(iii) Based on (ii), determine whether its complex Fourier series coefficients c_{n} be real or pure imaginary? Explain.
$c_{n}=\frac{a_{n}-i b_{n}}{2}$
c_{n} will be pure imaginary because the function is odd and it's Fourier series don't have real terms i.e a_{n}
(iv) Based on (ii), determine the relationship between c_{n} and c_{-n}.
$c_{-n}=-c_{n}$
(v) Write down the equation of the function in the interval $-\frac{T}{2}<t \leq \frac{T}{2}$.
$f(t)= \begin{cases}1, & 0<t \leq 2 \pi \\ -1, & -2 \pi<t \leq 0 \\ 0, & \text { otherwise }\end{cases}$
(vi) Now find its complex Fourier series. Clearly write the final expressions for c_{0} and c_{n}.

$$
\begin{aligned}
c_{0} & =\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t \\
c_{0} & =\frac{1}{4 \pi}\left(\int_{-2 \pi}^{0}-1 d t+\int_{0}^{2 \pi} 1 d t\right)=0 \\
c_{n} & =\frac{1}{4 \pi}\left(\int_{-2 \pi}^{0}-e^{-i \frac{n t}{2}} d t+\int_{0}^{2 \pi} e^{-i \frac{n t}{2}} d t\right) \\
& =\frac{1}{4 \pi}\left(\left.\frac{2 e^{-i \frac{n t}{2}}}{i n}\right|_{-2 \pi} ^{0}+\left.\frac{2 e^{-i \frac{n t}{2}}}{i n}\right|_{0} ^{2 \pi}\right) \\
& =\frac{1}{4 p i}\left(\frac{2-2 \cos n \pi}{i n}+\frac{-2 \cos n \pi+2}{i n}\right) \\
c_{n} & =\frac{1-(-1)^{n}}{i n \pi} \\
f(t) & =\sum_{n=-\infty}^{\infty} \frac{1-(-1)^{n}}{i n \pi} e^{i \frac{n t}{2}}
\end{aligned}
$$

(vii) Using your answer to (vi), evaluate the Fourier series coefficients a_{n} and b_{n}.

$$
\begin{aligned}
& c_{n}=\frac{a_{n}-i b_{n}}{2} \\
& a_{n}=0 \\
& b_{n}=2 i c_{n} \\
& b_{n}=2 i\left(\frac{1-(-1)^{n}}{i n \pi}\right) \\
& b_{n}=\frac{2\left(1-(-1)^{n}\right)}{n \pi}
\end{aligned}
$$

(viii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.

Figure 1: Amplitude Spectrum

Figure 2: Phase Spectrum
(ix) Calculate the average power in $f(t)$.

$$
\begin{aligned}
P_{\text {avg }} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} d t \\
P_{\text {avg }} & =\left(\int_{-2 \pi}^{2 \pi}(1)^{2} d t\right) \\
P_{\text {avg }} & =\frac{1}{4 \pi}\left[\left.t\right|_{-2 \pi} ^{2 \pi}\right. \\
P_{\text {avg }} & =\frac{1}{4 \pi}(4 \pi) \\
P_{\text {avg }} & =1
\end{aligned}
$$

(x) Plot its power spectrum $\left|c_{n}\right|^{2}$ for $-7 \leq n \leq 7$.

(b) Now consider the periodic function $g(t)$ shown in the following figure. This function is somehow related to $f(t)$ from part (a).

(i) Find its time period T and angular frequency ω_{0}.
$T=4 \pi$ and $\omega_{0}=\frac{1}{2}$
(ii) Is it an even function or an odd function?

Even function, as $f(-t)=f(t)$
(iii) Based on (ii), determine whether its complex Fourier series coefficients d_{n} be real or pure imaginary? Explain.
$d_{n}=\frac{a_{n}-i b_{n}}{2}$
d_{n} will be real. Because the function is even hence it's Fourier series will also be even and real also as $b_{n}=0$
(iv) Based on (ii), determine the relationship between d_{n} and d_{-n}. $d_{-n}=d_{n}$
(v) Determine the relationship between $f(t)$ and $g(t)$ and write down an expression for $g(t)$ in terms of $f(t)$. [Hint: $g(t)=a f\left(b\left(t-t_{0}\right)\right)+c$. Determine a, b, c and t_{0}.] $g(t)=2 f(t+\pi)+1$
(vi) Now using the Fourier series coefficient of $f(t)$, find the complex Fourier series of $g(t)$. Clearly write the final expressions for d_{0} and d_{n}. [Hint: Use properties of Fourier series.]

$$
c_{n}=\frac{1-(-1)^{n}}{i n \pi}
$$

Using time shift property:

$$
\begin{aligned}
f(t) & \rightarrow c_{n} \\
f(t+\pi) & \rightarrow c_{n} e^{-i n \omega_{0} \pi}
\end{aligned}
$$

And linearity property:

$$
\begin{aligned}
f(t) & \rightarrow c_{n} \\
2 f(t) & \rightarrow 2 c_{n} \\
g(t)=d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n w_{0} t} & =2 f(t+\pi)+1 \\
d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n w_{0} t} & =2 \sum_{n=-\infty}^{\infty}\left(c_{n} e^{i n w_{0} t_{0}} e^{i \frac{n t}{2}}\right)+1 \\
d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n w_{0} t} & =1+\sum_{n=-\infty}^{\infty}\left(2 c_{n} e^{i n w_{0} t_{0}} e^{i \frac{n t}{2}}\right)
\end{aligned}
$$

comparing both sides:

$$
\begin{aligned}
d_{0} & =1 \\
d_{n} & =2\left(\frac{1-(-1)^{n}}{i n \pi} e^{\frac{i n \pi}{2}}\right) \\
& =2\left(\frac{1-(-1)^{n}}{i n \pi}(i)^{n}\right) \\
& =\frac{2-2(-1)^{n}}{n \pi}(i)^{n-1} \\
d_{n} & =2(i)^{n-1}\left(\frac{1-(-1)^{n}}{n \pi}\right) \\
g(t) & =1+\sum_{n=-\infty}^{\infty} \frac{2(i)^{n-1}\left(1-(-1)^{n}\right)}{n \pi} e^{i n t}
\end{aligned}
$$

(vii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.

Figure 3: Amplitude Spectrum

Figure 4: Phase Spectrum
(viii) Calculate the average power in $g(t)$.

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} d t \\
& P_{\text {avg }}=\frac{1}{4 \pi}\left(\int_{-\pi}^{\pi}(3)^{2} d t+\int_{\pi}^{3 \pi}(1)^{2} d t\right) \\
& P_{\text {avg }}=\frac{1}{4 \pi}\left(\left.9 t\right|_{-\pi} ^{\pi}+\left.t\right|_{\pi} ^{3 \pi}\right) \\
& P_{\text {avg }}=\frac{1}{4 \pi}(20 \pi) \\
& P_{\text {avg }}=5
\end{aligned}
$$

(ix) Plot its power spectrum $\left|d_{n}\right|^{2}$ for $-7 \leq n \leq 7$.

Figure 5: Power Spectrum

Problem 3

(a) Consider the periodic function shown in the following figure.

(i) Find its time period T and angular frequency ω_{0}.
$T=2 \pi$ and $\omega_{0}=1$
(ii) Is it an even function or an odd function?

Neither Even nor Odd
(iii) Based on (ii), determine whether its complex Fourier series coefficients c_{n} be real or pure imaginary? Explain.
c_{n} will be complex as $a_{n} \neq 0$ and $b_{n} \neq 0$
(iv) Based on (ii), determine the relationship between c_{n} and c_{-n}.
$c_{-n}=\overline{c_{n}}$
(v) Write down the equation of the function in the interval $-\frac{T}{2}<t \leq \frac{T}{2}$.
$f(t)= \begin{cases}\frac{t}{\pi}, & 0<t \leq \pi \\ \frac{t}{\pi}+2, & -\pi<t \leq 0\end{cases}$
(vi) Now find its complex Fourier series. Clearly write the final expressions for c_{0} and c_{n}.

$$
\begin{aligned}
& c_{0}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t \\
& c_{0}=\frac{1}{2 \pi}\left(\int_{-\pi}^{0} \frac{t}{\pi}+2 d t+\int_{0}^{\pi} \frac{t}{\pi} d t\right)=1 \\
& c_{n}=\frac{1}{2 \pi}\left(\int_{-\pi}^{0}\left(\frac{t}{\pi}+2\right) e^{-i n t} d t+\int_{0}^{\pi}\left(\frac{t}{\pi}\right) e^{-i n t} d t\right) \\
& c_{n}=\frac{1}{2 \pi}\left(\left.\left(\frac{t e^{-i n t}}{-i n}+\frac{e^{-i n t}}{n^{2}}\right)\right|_{-\pi} ^{0}+\left.\left(\frac{2 e^{-i n t}}{-i n}\right)\right|_{-\pi} ^{0}+\left.\left(\frac{t e^{-i n t}}{-i n}+\frac{e^{-i n t}}{n^{2}}\right)\right|_{0} ^{\pi}\right) \\
& c_{n}=\left(\frac{1}{2 n^{2} \pi^{2}}-\frac{(-1)^{n}}{2 i n \pi}-\frac{(-1)^{n}}{2 n^{2} \pi^{2}}-\frac{1}{i n \pi}+\frac{(-1)^{n}}{i n \pi}-\frac{(-1)^{n}}{2 n i \pi}-\frac{1}{2 n^{2} \pi^{2}}+\frac{(-1)^{n}}{2 n^{2} \pi^{2}}\right) \\
& c_{n}=\frac{i}{n \pi} \\
& f(t)=1+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{i}{n \pi} e^{i n t}
\end{aligned}
$$

(vii) Using your answer to (vi), evaluate the Fourier series coefficients a_{n} and b_{n}.

$$
c_{n}=\frac{a_{n}-i b_{n}}{2}
$$

$$
\operatorname{Case} 1(n \neq 0)
$$

$$
\frac{i}{n \pi}=\frac{a_{n}}{2}-\frac{i b_{n}}{2}
$$

Comparing

$$
\begin{aligned}
a_{n} & =0 \\
b_{n} & =2 i c_{n} \\
b_{n} & =2 i\left(\frac{i}{n \pi}\right) \\
b_{n} & =-\frac{2}{n \pi} \\
\operatorname{Case} 2(n=0) & \\
c_{o} & =\frac{a_{o}}{2} \\
a_{o} & =2
\end{aligned}
$$

(viii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.

Figure 6: Amplitude Spectrum

Figure 7: Phase Spectrum
(ix) Calculate the average power in $f(t)$.

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} d t \\
& P_{\text {avg }}=\frac{1}{2 \pi}\left(\int_{-\pi}^{0}\left(\frac{t}{\pi}+2\right)^{2} d t+\int_{0}^{\pi}\left(\frac{t}{\pi}\right)^{2} d t\right) \\
& P_{\text {avg }}=\frac{1}{2 \pi}\left(2 \pi+\frac{\pi}{3}\right)+\frac{1}{2 \pi}\left(\frac{\pi}{3}\right) \\
& P_{\text {avg }}=1+\frac{1}{6}+\frac{1}{6} \\
& P_{\text {avg }}=\frac{4}{3}
\end{aligned}
$$

(x) Plot its power spectrum $\left|c_{n}\right|^{2}$ for $-7 \leq n \leq 7$.

(b) Now consider the periodic function $g(t)$ shown in the following figure. This function is somehow related to $f(t)$ from part (a).

(i) Find its time period T and angular frequency ω_{0}.
$T=2 \pi$ and $\omega_{0}=1$
(ii) Is it an even function or an odd function?

Neither Even nor Odd
(iii) Based on (ii), determine whether its complex Fourier series coefficients d_{n} be real or pure imaginary? Explain.
d_{n} will be Complex.
(iv) Based on (ii), determine the relationship between d_{n} and d_{-n}.
$d_{-n}=\bar{d}_{n}$
(v) Determine the relationship between $f(t)$ and $g(t)$ and write down an expression for $g(t)$ in terms of $f(t)$. [Hint: $g(t)=a f\left(t-t_{0}\right)+b$. Determine a, b and ϕ.] $g(t)=\frac{1}{2} f(-t)+\frac{1}{2}$
(vi) Now using the Fourier series coefficient of $f(t)$, find the complex Fourier series of $g(t)$. Clearly write the final expressions for d_{0} and d_{n}. [Hint: Use properties of Fourier series.]

$$
c_{n}=\frac{i}{n \pi}
$$

Using time reversal property:

$$
\begin{aligned}
f(t) & \rightarrow c_{n} \\
f(-t) & \rightarrow c_{-n}
\end{aligned}
$$

And linearity property:

$$
\begin{aligned}
f(t) & \rightarrow c_{n} \\
\frac{1}{2} f(t) & \rightarrow \frac{1}{2}\left(c_{n}\right) \\
g(t)=d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n t} & =\frac{1}{2}\left(1+\sum_{n=-\infty}^{\infty} c_{n} e^{-i n t}\right)+\frac{1}{2} \\
g(t)=d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n t} & =\frac{1}{2} f(-t)+\frac{1}{2} \\
d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n t} & =\frac{1}{2}\left(1+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{-i}{n \pi} e^{-i n t}\right)+\frac{1}{2} \\
d_{0}+\sum_{n=-\infty}^{\infty} d_{n} e^{i n t} & =1+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{-i}{2 n \pi} e^{-i n t}
\end{aligned}
$$

comparing both sides:

$$
\begin{aligned}
d_{0} & =1 \\
d_{n} & =-\frac{i}{2 n \pi} \\
g(t) & =1+\sum_{n=-\infty, n \neq 0}^{\infty} \frac{-i}{2 n \pi} e^{-i n t}
\end{aligned}
$$

(vii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.

Figure 8: Amplitude Spectrum

Figure 9: Phase Spectrum
(viii) Calculate the average power in $g(t)$.

$$
\begin{aligned}
& P_{a v g}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^{2} d t \\
& P_{a v g}=\frac{1}{2 \pi}\left(\int_{-\pi}^{0}\left(\frac{-t}{\pi}\right)^{2} d t+\int_{0}^{\pi}\left(\frac{t}{2 \pi}+1.5\right)^{2} d t\right) \\
& P_{a v g}=\frac{1}{2 \pi}\left(\frac{\pi}{3}+\frac{\pi}{12}+(1.5)^{2} \pi+\frac{1.5 \pi}{2}\right) \\
& P_{\text {avg }}=\frac{4+1+27+9}{24} \\
& P_{\text {avg }}=\frac{41}{21} \quad 16 \text { of } 17
\end{aligned}
$$

(ix) Plot its power spectrum $\left|d_{n}\right|^{2}$ for $-7 \leq n \leq 7$.

Figure 10: Power Spectrum

