Due 8 am, Fri Apr 19

Tips to avoid plagiarism

- Do not copy the solutions of your classmates.
- Your are encouraged to discuss the problems with your classmates in whatever way you like but make sure to REPRODUCE YOUR OWN SOLUTIONS in what you submit for grading.
- Cite all the online sources that you get help from.
- Keep your work in a secure place.

Problem 1

For each of the following functions
(a) $f(z)=\frac{z}{(z-1)(z-2)(z+2)^{2}}$
(b) $f(z)=\frac{\cos 2 z-1}{2 z(z+i)}$
(i) Find all the singular points.
(ii) Classify each singular point as removable or a pole (multiplicity n). Note: A simple pole has multiplicity $n=1$.
(iii) Find the residue corresponding to each singular point.
(iv) Evaluate the integral $\oint_{|z|=5} f(z) d z$ using residues.

Problem 2

(a) Consider the periodic function shown in the following figure.

(i) Find its time period T and angular frequency ω_{0}.
(ii) Is it an even function or an odd function?
(iii) Based on (ii), determine whether its complex Fourier series coefficients c_{n} be real or pure imaginary? Explain.
(iv) Based on (ii), determine the relationship between c_{n} and c_{-n}.
(v) Write down the equation of the function in the interval $-\frac{T}{2}<t \leq \frac{T}{2}$.
(vi) Now find its complex Fourier series. Clearly write the final expressions for c_{0} and c_{n}.
(vii) Using your answer to (vi), evaluate the Fourier series coefficients a_{n} and b_{n}.
(viii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.
(ix) Calculate the average power in $f(t)$.
(x) Plot its power spectrum $\left|c_{n}\right|^{2}$ for $-7 \leq n \leq 7$.
(b) Now consider the periodic function $g(t)$ shown in the following figure. This function is somehow related to $f(t)$ from part (a).

(i) Find its time period T and angular frequency ω_{0}.
(ii) Is it an even function or an odd function?
(iii) Based on (ii), determine whether its complex Fourier series coefficients d_{n} be real or pure imaginary? Explain.
(iv) Based on (ii), determine the relationship between d_{n} and d_{-n}.
(v) Determine the relationship between $f(t)$ and $g(t)$ and write down an expression for $g(t)$ in terms of $f(t)$. [Hint: $g(t)=a f\left(b\left(t-t_{0}\right)\right)+c$. Determine a, b, c and t_{0}.]
(vi) Now using the Fourier series coefficient of $f(t)$, find the complex Fourier series of $g(t)$. Clearly write the final expressions for d_{0} and d_{n}. [Hint: Use properties of Fourier series.]
(vii) Plot its amplitude spectrum and phase spectrum for $-7 \leq n \leq 7$.
(viii) Calculate the average power in $g(t)$.
(ix) Plot its power spectrum $\left|d_{n}\right|^{2}$ for $-7 \leq n \leq 7$.

Problem 3

Repeat Problem 2 for following functions $f(t)$ and $g(t)$.
(a) Function $f(t)$ with complex Fourier series coefficients c_{n}.

(b) Function $g(t)$ with complex Fourier series coefficients d_{n}.

