MT240: Complex Variables and Transforms
Final Exam (Spring 2019)

Wednesday, May 22

Name: \qquad Roll Number:

180 Minutes

Instructions

- There are $\mathbf{2 0}$ printed pages and $\mathbf{6}$ blank page in this booklet.
- All problems are compulsory.
- Calculators are strictly not allowed.
- Write all your work in this booklet, including any rough work.
- Read the statement carefully before you start attempting a problem.
- Properly label all the axes and relevant points if you draw any graphs.
- You are allowed to get help from your own hard copy of lecture notes uploaded on Google Classroom.
- This exam will assess your following Course Learning Objectives (CLOs)

CLO 1: Determine whether a complex function is analytic.
CLO 2: Calculate the mapping through a complex analytic function.
CLO 3: Evaluate the integrals related to Fourier and Laplace transforms for standard functions and interpret their graphs.

Problem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
Marks	15	30	25	20	10	$\mathbf{1 0 0}$

Course Instructor: Usama Bin Sikandar

Page for marks and contestation.
Do NOT write anything on this page.

P1	P2	P3	P4	P5	Total
15	30	25	20	10	100

Problem 1 [15 marks]

Consider a closed contour γ shown in the figure below.

Evaluate the following integrals.
(a) $\oint_{\gamma} \frac{z-3-4 i}{z} d z$
$\oint_{\gamma} \frac{z-3-4 i}{z} d z=0$, Using Cauchy's Integral Theorem
(b) $\oint_{\gamma} \frac{z}{z-3-4 i} d z$

$$
=2 \pi i(3+4 i)=-8 \pi+6 \pi i
$$

(c) $\oint_{\gamma} \frac{z^{2}}{(z-3-4 i)^{2}} d z$

$$
=\left.\frac{2 \pi i}{1!} \cdot \frac{d}{d z} z^{2}\right|_{3+4 i}=2 \pi i .\left.(2 z)\right|_{3+4 i}=-16 \pi+12 \pi i
$$

(d) $\oint_{\gamma} \frac{z}{(z-4-4 i)(z-3-4 i)^{2}} d z$

$$
\operatorname{Res}(f, 4+4 i)=\left.\frac{z}{(z-3-4 i)^{2}}\right|_{4+4 i}=4+4 i
$$

$$
\operatorname{Res}(f, 3+4 i)=\left.\frac{d}{d z} \frac{z}{z-4-4 i}\right|_{3+4 i}=\left.\frac{(z-4-4 i)-z}{(z-4-4 i)^{2}}\right|_{3+4 i}=-4-4 i
$$

$$
\oint_{\gamma} \frac{z^{2}}{(z-3-4 i)^{2}} d z=2 \pi i(\operatorname{Res}(f, 4+4 i)+(\operatorname{Res}(f, 3+4 i)))=0
$$

[Blank page for working]

Problem 2 [30 marks]

(a) Consider the periodic function $f(t)$ shown in the figure.

(i) What is the time period of $f(t)$?
2π
(ii) Is the function even or odd? Explain.

ODD
$f(t)=-f(-t)$
(iii) Based on (ii), which of the following is true about the complex Fourier series coefficients of $f(t)$?

$$
c_{n}=-c_{-n}
$$

(iv) Write down an expression for $f(t)$ in terms of t for $-\frac{T}{2}<t \leq \frac{T}{2}$.

$$
f(t)=t, \quad t[-\pi, \pi]
$$

(v) Evaluate its complex Fourier series coefficients c_{n}.

$$
\begin{aligned}
& c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n w_{o} t} d t \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} t(-2 i \operatorname{sinnt}) d t \\
& \left.=\left.\frac{i t \cos (n t)}{n \pi}\right|_{0} ^{\pi}-\frac{i t \sin (n t)}{n^{2} \pi}\right)\left.\right|_{0} ^{\pi} \\
& =\frac{i(-1)^{n}}{n}, \quad n \neq 0 \\
& c_{o}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(t) d t=0
\end{aligned}
$$

(vi) Using your answer to (v), find a_{n} and b_{n}, the coefficients of Fourier cosine series and sine series respectively.
$a_{n}=c_{n}+\overline{c_{n}}=0$
$b_{n}=i\left(c_{n}+\overline{c_{n}}\right)=-\frac{2(-1)^{n}}{n}$
(vii) Plot the amplitude spectrum $\left|c_{n}\right|$ and phase spectrum $\angle c_{n}$ on the axes given below for $n=\left[\begin{array}{lllllllll}-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\end{array}\right]$.

(viii) Use Parseval's identity to evaluate the summation $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}|t|^{2} d t=\sum_{n=-\infty, n \neq 0}^{\infty}\left|\frac{i(-1)^{n}}{n}\right|^{2} \\
& \frac{t^{3}}{3 \pi}\left|\left.\right|_{0} ^{\pi}=\sum_{n=1}^{\infty} \frac{2}{n^{2}}\right. \\
& \frac{\pi^{2}}{3}=\sum_{n=1}^{\infty} \frac{2}{n^{2}} \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

(b) Using your answer to $\mathrm{a}(\mathrm{v})$, find the complex Fourier series coefficients d_{n} of the following function $f_{1}(t)$.

(a) $f_{1}(t)=-f(t)$ $d_{n}=-c_{n}$
(b) $f_{1}(t)=f(-t)$ $d_{n}=c_{n}$

$$
d_{n}=\frac{-i(-1)^{n}}{n} \quad \mathrm{n} \neq 0
$$

$d_{o}=0$
(c) (i) Using your answer to a(v), find the complex Fourier series coefficients e_{n} of the following function $f_{2}(t)$.

$$
\begin{aligned}
& f_{2}(t)=-f(t)+\pi \\
& e_{n}=\frac{-i(-1)^{n}}{n} \quad \mathrm{n} \neq 0 \\
& e_{o}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(-f(t)+\pi) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \pi=\pi
\end{aligned}
$$

(ii) Find the value of Fourier series of $f_{2}(t)$ at $t=-\frac{3}{2} T$.
$t=-3 \pi$
$f_{2}(t)=\frac{f_{2}\left(-3 \pi^{-}\right)+f_{2}\left(-3 \pi^{+}\right)}{2}$
$f_{2}(t)=\frac{0+2 \pi}{2}$
$f_{2}(t)=\pi$

Problem 3 [25 marks]

Consider the function $f(t)$ shown in the figure below.

(a) Is this function even or odd? Explain.

ODD
$f(t)=-f(-t)$
(b) Based on (a), is its Fourier transform $F(\omega)$ real or pure imaginary?

Pure Imaginary
(c) Evaluate $F(\omega)$.

$$
\begin{aligned}
& F(w)=\int_{-2}^{2} t e^{-i w t} d t \\
& F(w)=-2 i \int_{0}^{2} t \sin w t d t \\
& F(w)=\left.\frac{2 i t \cos (w t)}{w}\right|_{0} ^{2}-\left.\frac{2 i t \sin (w t)}{w^{2}}\right|_{0} ^{2} \\
& F(w)=\frac{i 4 t \cos (2 w)}{w}-\frac{2 i \sin (2 w)}{w^{2}} \\
& F(w)=\frac{i 8 t \cos (2 w)}{2 w}-\frac{i 8 \sin (2 w)}{2 w^{2}} \quad \mathrm{w} \neq 0 \\
& F(0)=\int_{-2}^{2} t d t=0
\end{aligned}
$$

(d) Using your answer to (c), find the Fourier transform of the following function $f_{1}(t)$.

$$
\begin{aligned}
& f_{1}(t)=f(2 t) \\
& F_{1}(w)=\frac{1}{2} F\left(\frac{w}{2}\right) \\
& F_{1}(w)=\frac{4 i}{w}\left(\cos (w)-\frac{\sin (w)}{w}\right)
\end{aligned}
$$

(e) Using your answer to (c), find the Fourier transform of the following function $f_{2}(t)$.

$$
\begin{aligned}
& f_{2}(t)=f(-t)+1 \\
& F_{2}(w)=F(-w)+2 \pi \delta(w) \\
& F_{2}(w)=i\left[\frac{2 \sin (2 w)}{w^{2}}-\frac{4 \cos (2 w)}{w}\right]+2 \pi \delta(w)
\end{aligned}
$$

(f) The Fourier transform of a function $f_{3}(t)$ is shown in the figure below. Using your answer to (c), find the function $f_{3}(t)$.

$F_{3}(w)=f(w)$
$f(t) \longleftrightarrow F(w)$
$F(t) \longleftrightarrow 2(-w)$
$\frac{1}{2 \pi} F(t) \longleftrightarrow f(-w)$
$\frac{1}{2 \pi} F(-t) \longleftrightarrow F_{3}(w)$
$f_{3}(t)=i\left[\frac{\sin (t)}{\pi t^{2}}-\frac{2 \cos (2 t)}{\pi t}\right]$
(g) Using the shape of $F_{3}(\omega)$, determine whether $f_{3}(t)$ is absoltely integrable.

No, because $F_{3}(w)$ is not continuous

Problem 4 [20 marks]

Consider the function $f(t)$ shown in the figure.

(a) Evaluate the convolution product $f(t) * g(t)$, where $g(t)$ is shown below.

Solution

for: $|t| \geq-3$

$$
f(t) * g(t)=0
$$

for: $-3<t<-1$

$$
\begin{aligned}
& \int_{-2}^{t+1} 2 d t \\
= & 2 t+6
\end{aligned}
$$

for: $-1<t<1$

$$
\begin{aligned}
& \int_{t-1}^{t+1} 2 d t \\
= & 4
\end{aligned}
$$

for: $1<t<3$

$$
\begin{aligned}
& \int_{t-1}^{2} 2 d t \\
= & 6-2 t
\end{aligned}
$$

$f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d t= \begin{cases}0, & |t| \geq 3 \\ 6+2 t, & -3<t \leq-1 \\ 4, & -1 \leq t \leq 1 \\ 6-2 t, & 1<t<3\end{cases}$
[Blank page for working]
(b) Sketch the graph of $f(t) * g(t)$.

(c) Without evaluating any integral, find the Fourier transform of $f(t) * g(t)$.

$$
f(t) * g(t) \longleftrightarrow F(w) G(w)
$$

$$
\begin{aligned}
& F(w) G(w)=\left[\frac{4 \sin \left(\frac{4 w}{2}\right)}{\frac{4 w}{2}}\right]\left[\frac{4 \sin \left(\frac{2 w}{2}\right)}{\frac{2 w}{2}}\right] \\
& F(w) G(w)=\frac{8 \sin (2 w) \sin (w)}{w^{2}}
\end{aligned}
$$

(d) Sketch the graph of convolution product $f(t) * g_{2}(t)$, where $g_{2}(t)$ is shown below.

(e) Without evaluating any integral, find the Fourier transform of $f(t) * g_{2}(t)$.

$$
\begin{aligned}
& f(t) * g(t) \longleftrightarrow F(w) G(w) \\
& F(w)=\frac{2 \sin (2 w)}{w} \\
& G(w)=2+e^{4 w}+e^{-4 w}=2+2 \cos (4 w) \\
& F(w) G(w)=\left(\frac{2 \sin (2 w)}{w}\right)(2+2 \cos (4 w))
\end{aligned}
$$

Problem 5 [10 marks]

Evaluate the Laplace transform of the following function $f(t)$ and find its region of convergence. Notice that the function is periodic for $t \geq 0$ but is equal to 0 for $t<0$.

Solution
$F(s)=\frac{F_{T}(s)}{1-e^{-s T}}, \quad T=2 \pi$
$F_{T}(s)=\int_{0}^{t} f(t) e^{-s t}$
$F_{T}(s)=\int_{0}^{\pi} t e^{-s t} d t+\int_{\pi}^{2 \pi}(t-2 \pi) e^{-s t} d t$
$F_{T}(s)=\int_{0}^{\pi} t e^{-s t} d t-e^{2 \pi s} \int_{0}^{\pi} t e^{-s t} d t$
$F_{T}(s)=\left(\frac{e^{\pi s}-e^{-\pi s}}{s^{2}}\right)\left(1-e^{\pi s}+\pi s\right)$
$F_{T}(s)=\frac{e^{\pi s}}{s^{2}}\left(1-e^{\pi} s+\pi s\right)$

[Blank page for working]
[Blank page for working]
[Blank page for working]

