MT240: Complex Variables and Transforms

Final Exam (Spring 2019)
Wednesday, May 22

Name: \qquad Roll Number:
180 Minutes

Instructions

- There are $\mathbf{2 0}$ printed pages and $\mathbf{6}$ blank page in this booklet.
- All problems are compulsory.
- Calculators are strictly not allowed.
- Write all your work in this booklet, including any rough work.
- Read the statement carefully before you start attempting a problem.
- Properly label all the axes and relevant points if you draw any graphs.
- You are allowed to get help from your own hard copy of lecture notes uploaded on Google Classroom.
- This exam will assess your following Course Learning Objectives (CLOs)

CLO 1: Determine whether a complex function is analytic.
CLO 2: Calculate the mapping through a complex analytic function.
CLO 3: Evaluate the integrals related to Fourier and Laplace transforms for standard functions and interpret their graphs.

Problem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
Marks	15	30	25	20	10	$\mathbf{1 0 0}$

Course Instructor: Usama Bin Sikandar

Page for marks and contestation.
Do NOT write anything on this page.

P1	P2	P3	P4	P5	Total
15	30	25	20	10	100

Problem 1 [15 marks]

Consider a closed contour γ shown in the figure below.

Evaluate the following integrals.
(a) $\oint_{\gamma} \frac{z-3-4 i}{z} d z$
(b) $\oint_{\gamma} \frac{z}{z-3-4 i} d z$
(c) $\oint_{\gamma} \frac{z^{2}}{(z-3-4 i)^{2}} d z$
(d) $\oint_{\gamma} \frac{z}{(z-4-4 i)(z-3-4 i)^{2}} d z$
[Blank page for working]

Problem 2 [30 marks]

(a) Consider the periodic function $f(t)$ shown in the figure.

(i) What is the time period of $f(t)$?
(ii) Is the function even or odd? Explain.
(iii) Based on (ii), which of the following is true about the complex Fourier series coefficients of $f(t)$?$c_{n}=c_{-n}$$c_{n}=-c_{-n}$
(iv) Write down an expression for $f(t)$ in terms of t for $-\frac{T}{2}<t \leq \frac{T}{2}$.
(v) Evaluate its complex Fourier series coefficients c_{n}.
(vi) Using your answer to (v), find a_{n} and b_{n}, the coefficients of Fourier cosine series and sine series respectively.
(vii) Plot the amplitude spectrum $\left|c_{n}\right|$ and phase spectrum $\angle c_{n}$ on the axes given below for $n=\left[\begin{array}{lllllllll}-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\end{array}\right]$.

(viii) Use Parseval's identity to evaluate the summation $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
(b) Using your answer to $\mathrm{a}(\mathrm{v})$, find the complex Fourier series coefficients d_{n} of the following function $f_{1}(t)$.

(c) (i) Using your answer to a(v), find the complex Fourier series coefficients e_{n} of the following function $f_{2}(t)$.

(ii) Find the value of Fourier series of $f_{2}(t)$ at $t=-\frac{3}{2} T$.

Problem 3 [25 marks]

Consider the function $f(t)$ shown in the figure below.

(a) Is this function even or odd? Explain.
(b) Based on (a), is its Fourier transform $F(\omega)$ real or pure imaginary?
(c) Evaluate $F(\omega)$.
(d) Using your answer to (c), find the Fourier transform of the following function $f_{1}(t)$.

(e) Using your answer to (c), find the Fourier transform of the following function $f_{2}(t)$.

(f) The Fourier transform of a function $f_{3}(t)$ is shown in the figure below. Using your answer to (c), find the function $f_{3}(t)$.

(g) Using the shape of $F_{3}(\omega)$, determine whether $f_{3}(t)$ is absoltely integrable.

Problem 4 [20 marks]

Consider the function $f(t)$ shown in the figure.

(a) Evaluate the convolution product $f(t) * g(t)$, where $g(t)$ is shown below.

[Blank page for working]
[Blank page for working]
(b) Sketch the graph of $f(t) * g(t)$.

(c) Without evaluating any integral, find the Fourier transform of $f(t) * g(t)$.
(d) Sketch the graph of convolution product $f(t) * g_{2}(t)$, where $g_{2}(t)$ is shown below.

(e) Without evaluating any integral, find the Fourier transform of $f(t) * g_{2}(t)$.

Problem 5 [10 marks]

Evaluate the Laplace transform of the following function $f(t)$ and find its region of convergence. Notice that the function is periodic for $t \geq 0$ but is equal to 0 for $t<0$.

[Blank page for working]
[Blank page for working]
[Blank page for working]

