

MT240: Complex Variables and Transforms

Final Exam (Spring 2019)

Wednesday, May 22

Name: ___

Roll Number:

180 Minutes

Instructions

- There are **20** printed pages and **6** blank page in this booklet.
- All problems are compulsory.
- Calculators are strictly not allowed.
- Write all your work in this booklet, including any rough work.
- Read the statement **carefully** before you start attempting a problem.
- Properly label all the axes and relevant points if you draw any graphs.
- You are allowed to get help from **your own hard copy of lecture notes** uploaded on Google Classroom.
- This exam will assess your following Course Learning Objectives (CLOs)
 - CLO 1: Determine whether a complex function is analytic.
 - CLO 2: Calculate the mapping through a complex analytic function.
 - CLO 3: Evaluate the integrals related to Fourier and Laplace transforms for standard functions and interpret their graphs.

Problem	1	2	3	4	5	Total
Marks	15	30	25	20	10	100
	CLO 1					

Course Instructor: Usama Bin Sikandar

P1	P2	P3	P4	$\mathbf{P5}$	Total
15	30	25	20	10	100

Page for marks and contestation. Do NOT write anything on this page.

Problem 1 [15 marks]

Consider a closed contour γ shown in the figure below.

Evaluate the following integrals.

(a)
$$\oint_{\gamma} \frac{z-3-4i}{z} dz$$

(b)
$$\oint_{\gamma} \frac{z}{z-3-4i} dz$$

(c)
$$\oint_{\gamma} \frac{z^2}{(z-3-4i)^2} dz$$

(d)
$$\oint_{\gamma} \frac{z}{(z-4-4i)(z-3-4i)^2} dz$$

Problem 2 [30 marks]

(a) Consider the periodic function f(t) shown in the figure.

(i) What is the time period of f(t)?

(ii) Is the function even or odd? Explain.

- (iii) Based on (ii), which of the following is true about the complex Fourier series coefficients of f(t)?
 - $\Box c_n = c_{-n}$
 - $\Box \ c_n = -c_{-n}$
- (iv) Write down an expression for f(t) in terms of t for $-\frac{T}{2} < t \leq \frac{T}{2}$.

(v) Evaluate its complex Fourier series coefficients c_n .

(vi) Using your answer to (v), find a_n and b_n , the coefficients of Fourier cosine series and sine series respectively.

(vii) Plot the amplitude spectrum $|c_n|$ and phase spectrum $\angle c_n$ on the axes given below for $n = \begin{bmatrix} -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \end{bmatrix}$.

(viii) Use Parseval's identity to evaluate the summation $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

 π $f_1(t)_0$

0

t

 π

-π

 2π

 3π

 4π

 5π

-π¢

-5π **-**4π **-**3π **-**2π

(b) Using your answer to a(v), find the complex Fourier series coefficients d_n of the following function $f_1(t)$.

(c) (i) Using your answer to a(v), find the complex Fourier series coefficients e_n of the following function $f_2(t)$.

(ii) Find the value of Fourier series of $f_2(t)$ at $t = -\frac{3}{2}T$.

Problem 3 [25 marks]

Consider the function f(t) shown in the figure below.

(a) Is this function even or odd? Explain.

(b) Based on (a), is its Fourier transform $F(\omega)$ real or pure imaginary?

(c) Evaluate $F(\omega)$.

(d) Using your answer to (c), find the Fourier transform of the following function $f_1(t)$.

(e) Using your answer to (c), find the Fourier transform of the following function $f_2(t)$.

(f) The Fourier transform of a function $f_3(t)$ is shown in the figure below. Using your answer to (c), find the function $f_3(t)$.

(g) Using the shape of $F_3(\omega)$, determine whether $f_3(t)$ is absolutely integrable.

Problem 4 [20 marks]

Consider the function f(t) shown in the figure.

(a) Evaluate the convolution product f(t) * g(t), where g(t) is shown below.

(b) Sketch the graph of f(t) * g(t).

(c) Without evaluating any integral, find the Fourier transform of f(t) * g(t).

(d) Sketch the graph of convolution product $f(t) * g_2(t)$, where $g_2(t)$ is shown below.

(e) Without evaluating any integral, find the Fourier transform of $f(t) * g_2(t)$.

Problem 5 [10 marks]

Evaluate the Laplace transform of the following function f(t) and find its region of convergence. Notice that the function is periodic for $t \ge 0$ but is equal to 0 for t < 0.

