

MT240: Complex Variables and Transforms										
Course Code	MT240	Semester	4th							
Credit Hours	3	Term	Spring 2018							
Instructor	Usama Bin Sikandar	Pre-reqs	Calculus and Analytic Geometry							
Office	Room 9, 4th floor	E-mail	usama.sikandar@itu.edu.pk							
Department	Electrical Engineering	Discipline	Mathematics							
Teaching Assistants	Muhammad Abdullah	Office Hours	Monday 12 - 1:30 pm							

Course Description

The course focuses on the basic geometry, algebra and calculus of complex variables and complex functions, for their applications in evaluating and analyzing Fourier and Laplace transforms.

Course Outcomes/Objectives

By the end of the course, the students must be able to

- Demonstrate a strong understanding of why complex numbers are important
- Visualize the arithmetics of complex numbers in Cartesian and polar forms
- Determine whether a complex function is analytic
- Calculate the map of a complex analytic function
- Calculate the derivative of an analytic function
- Analyze the convergence of complex Taylor and Laurent series
- Calculate complex integrals including treatment of residues
- Evaluate integrals related to Fourier and Laplace transforms for standard functions

Books	
Text Books:	1. Complex Variables and Applications (8th ed) by J. W. Brown and R. V. Churchill
	2. Fourier and Laplace Transforms by R. J. Beerends, H. G. ter Morsche, J. C. van den Berg
	<u>and E. M. van de Vrie. Cambridge University Press (2003)</u>
Reference	3. <u>Advanced Engineering Methods (10th edition) by E. Kreyszig, H. Kreyszig and E.</u>
Books:	Norminton.
	4. Fundamentals of Complex Analysis with Applications to Engineering and Science, by E. B.
	Saff and A. D. Snider.

Course Assessment Distribution:						
Quizzes: 15 % (14 recitation worksheets, 5 quizzes)						
Assignments: 20 % (7 homework assignments)						
Midterm Exam:	25 %					
Final Exam:	40 %					

Weekly Lecture Breakdown									
Week 1:	Complex Plane	Week 10:	Fourier Series						
Week 2:	Complex Arithmetics	Week 11:	Fourier Series Properties						
Week 3:	Complex Functions	Week 12:	Fourier Transform						
Week 4:	Cauchy-Riemann Equations	Week 13:	Fourier Transform Properties						
Week 5:	Mobius Transformation	Week 14:	Convolution						
Week 6:	Cauchy's Integral Theorem	Week 15:	Laplace Transform						
Week 7:	Power Series and Laurent Series	Week 16:	Laplace Transform Properties						
Week 8:	Residue Integration	Week 17:	Prep week						
Week 9:	Midterm exam	Week 18:	Final exam						

Chapter	Topics	Lectures						
Churchill	Complex Variable	4						
Ch 1	 Fundamental theorem of algebra* 							
	Mathematical Convenience							
	• Applications							
*Notes on	Complex plane							
Classroom	Cartesian and polar forms							
	 Conjugate root theorem* 							
	Complex arithmetics							
	 nth roots of a complex number 							
	 Planar sets and regions in complex plane 							
	Open, closed, connected, bounded sets							
Churchill	Complex Functions	5						
Ch 2, 3, 9	 Domain, co-domain and range in the complex plane 							
	• Mapping from <i>x-y</i> plane to <i>u-v</i> plane							
	Limits and continuity							
	 Complex exponential and trigonometric functions 							
	 Polynomials and zeros 							
	Derivative and analyticity							
	Cauchy-Riemann equations							
	Harmonic functions							
	Conformal mapping							
	Mobius transformation							
	Complex Integration	3						
Churchill	Paths and contours							
Ch 4	Path parameterization							
	Contour integration							
	Cauchy's integral theorem							
	Cauchy's integral formulas							
	Residue Theory	4						
	Power and Taylor series							
Churchill	Radius of convergence							
Ch 5, 6	Convergence tests							
	Laurent series							
	• Residues							

	• Cauchy's residue theorem						
	Residue integration						
Mid Term Exam							
Beerends	Fourier Series	4					
Ch 3, 4	Complex Fourier series						
	Frequency domain spectrum						
	Fundamental theorem of Fourier series						
	Properties of Fourier Series						
	Parseval's identity						
	Fourier Transform	6					
Beerends	Fourier series to Fourier transform						
Ch 6, 7	Frequency domain spectrum						
	Fundamental theorem of Fourier transform						
	Inverse Fourier transform						
	Properties of Fourier Transform						
	Parseval's theorem						
	Convolution						
	Laplace Transform	4					
Beerends	• s-domain						
Ch 12, 13	Region of convergence						
	Initial and final value theorems						
	Properties of Laplace transform						
Final Exam							

Course Learning Objectives (CLOs):									
CLO	Description	BT	PLOs						
1	Determine whether a complex function is analytic	C1, 4	1						
2	Calculate the mapping through a complex analytic function	C2, 3	1, 4						
3	Analyze the convergence of complex Taylor and Laurent series	C4, 5	1, 2, 4						
4	Evaluate the integrals related to Fourier and Laplace transforms for standard functions	C2, 3	1, 3, 5						

Mapping of CLOs to Assessment Modules:									
Assessments	CLO1	CLO2	CLO3	CLO4					
Quizzes	1	✓	1	✓					
Assignments	1	√	1	✓					
MidTerm	1	1	1						
Final Exam	1	1	1	1					

Mapping of CLOs to Program Learning Outcomes (PLOs):									
PLOs/CLOS	CLO1	CLO2	CLO3	CLO4					
PLO 1 (Engineering Knowledge)	1	1	<i>✓</i>	1					
PLO 2 (Problem Analysis)			<i>✓</i>						
PLO 3 (Development of Solutions)				✓					
PLO 4 (Investigation)		1	<i>\</i>						
PLO 5 (Modern tool usage)				✓					
PLO 6 (The Engineer and Society)									
PLO 7 (Environment and Sustainability)									
PLO 8 (Ethics)									
PLO 9 (Individual and Team Work)	PLO 9 (Individual and Team Work)								
PLO 10 (Communication)									
PLO 11 (Project Management)									
PLO 12 (Lifelong Learning)									

Grading Policy:													
Quiz Policy:	There will be	e 4 or 5	5 quizz	es in t	his cou	rse. Qi	uizzes	will be	unani	nounce	ed but	will tal	ĸe
	place in a rec	citatior	ı right	after t	he sub	missio	n of a	homev	vork a	ssignm	ient ar	nd will	be
	totally based	on the	e probl	ems ir	n that a	ssignn	nent. S	o to sc	ore we	ell in q	uizzes	, stude	nts
	must spend s	must spend sufficient time solving the problems individually. Grading for quizzes will											
	generally be	generally be on a scale of 0 to 10. All quizzes will count toward the total.											
Assignment	In order to d	In order to develop comprehensive understanding of the subject and push the students											
Policy:	out of their c	omfor	t zone	in the	subjec	t, chal	lengin	g prol	blems	will be	e assig	ned as	_
	homework. T	The stu	idents	must o	lo the	home	work i	ndivic	lually.	Соруі	ng of h	omew	ork or
	any kind of p	olagiari	ism is l	nighly	discou	raged	and vi	olatior	ns will	be dea	lt with	sever	ely by
	referring any	occur	rences	s to the	e discip	olinary	comm	nittee a	and a \mathbf{s}	traigh	t-awa	y zero.	
	Homework s	ubmit	ted lat	e by o	ne day	will t	be pen	alized	by 20	1% , bu	t after	that n	othing
	Will be acce	will be accepted. All homework assignments will count towards the total (no											
	best-of poll	'best-of' policy). The problems in the assignment are meant to be challenging to raise the											
	the exame but the real world scenarios												
Dlagiaricmu	The course has a zero tolerance policy towards plagiarism. While collaboration in this												
r lagiai isili.	course is highly encouraged you must ensure that you do not claim other people's work /												
	ideas as your own Plagiarism occurs when the words ideas assertions theories figures												
	images programming codes of others are presented as your own work. You must cite and												
	acknowledge	acknowledge all sources of information in your assignments. Failing to comply with the											
	plagiarism p	nlagiarism policy will lead to strict negatives including a failing grade in the course and											
	referral to th	e Disc	iplina	rv Cor	nmitte	e for a	a strict	action	n. whic	h mav	possib	lv lead	to
	failing grad	es in a	ll the	course	es of th	e sem	ester.		, -	- 5	I	j	
Grading	Absolute gra	ding			1		12	1		1			5
	Grades	A+	А	A-	B+	В	B-	C+	С	C-	D+	D	F
	Cutoffs	>85	>75	>70	>65	>60	>55	>50	>45	>40	>35	>30	<30