# Worksheet 1 

## Problem 1

Determine domain and range for each of the following functions. Also sketch the graphs of these functions by hand.
(a) $3 x-2 y=-4$
(b) $2 y+3 x=8$
(c) $y=x^{2}-8 x+16$
(d) $y=-x^{2}+10 x-22$
(e) $y=31 e^{-2 x}$
(f) $y=17 e^{\frac{1}{2} x}$
(g) $y=\cos 2 x$
(h) $y=2 \sin x$

## Problem 2

Find the equation of a straight line that
(a) passes through the point $(-1,-2)$ and has a gradient of $\frac{4}{7}$.
(b) joins the points $(3,6)$ and $(2,-5)$.

Also sketch these lines.

## Problem 3

You opened your differential equations book, and noticed that the product of the two pages in front of you was equal to 1122 . What were the numbers of those pages?

## Problem 4

We discussed in the lecture that any quadratic equation with constant real coefficients

$$
f(x)=a x^{2}+b x+c,
$$

can be converted into the form

$$
f(x)=a(x-k)^{2}+m,
$$

by completing the square. Consider the following functions,
$f(x)=x^{2}-10 x-2$
Sketch the curve, clearly labeling the coordinates of ${ }_{1}$ of $\boldsymbol{y}$-intercept.

## Problem 5

(a) Plot the following intervals on the real number line. Also specify whether the interval is open or closed.
(i) $\{x: 2<x \leq 5\}$
(ii) $\{x:-3<x<-1\}$
(b) Plot the following regions on Cartesian plane. Also specify whether the region is open or closed.
(i) $\{(x, y):-2<x \leq 5 \wedge-5<y<-1\}$
(ii) $\left\{(a, b): a^{2}+b^{2} \leq 16\right\}$

## Problem 6

Consider the function $f(x)=x^{2}$.
(a) Calculate the derivative of this function $\frac{d f}{d x}$.
(b) Compute $\left.\frac{d f}{d x}\right|_{x=2}$
(c) Now we want to estimate $\left.\frac{d f}{d x}\right|_{x=2}$ using the formal definition of derivative. The formal definition of derivative is given by

$$
\frac{d f}{d x}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}
$$

Fill in the table below:

| $x$ | $x_{o}$ | $f(x)=x^{2}$ | $\Delta f=x^{2}-x_{o}^{2}$ | $\Delta x=x-x_{o}$ | $\frac{\Delta f}{\Delta x}$ | $\frac{d f}{d x}\left(x_{o}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2.5 | 2 |  |  |  |  |  |
| 2.4 | 2 |  |  |  |  |  |
| 2.3 | 2 |  |  |  |  |  |
| 2.2 | 2 |  |  |  |  |  |
| 2.1 | 2 |  |  |  |  |  |
| 2.05 | 2 |  |  |  |  |  |
| 2.01 | 2 |  |  |  |  |  |
| 2.001 | 2 |  |  |  |  |  |

What do the values in the table tell you about the estimate of the derivative from its formal definition?

