
MT232: Differential Equations

Homework 4 Solutions
Due Mon Nov 26, 9:00 AM Fall 2018

Problem 1

For each of the following initial and boundary value problems,

(a) y′′ + 4y′ + 5y = 0, y(1) = 3 and y′(1) = 9

(i) Determine whether system is stable, marginally stable or unstable.
The char. Eqn. is given as

S(r) = r2 + 4r + 5

Roots of the above char eqn are
r1, r2 = −2± i

Since α = -2<0, =⇒ System is stable.

(ii) For stable and marginally stable systems, find value of natural frequency (ωo), damping ratio
(ζ) and quality factor (Q) .
As we know the general equation

y′′ + 2ζωoy
′ + ω2

oy = 0

By comparing the coefficients. we get

ωo =
√

5 = 2.24

2ζωo = 4 =⇒ ζ =
4

2
√

5
= 0.894

To find quality factor, the genral equation is given as

y′′ +
ωo

Q
y′ + ω2

o

ωo

Q
= 4 =⇒ Q =

√
5

4
= 0.56

(iii) Is the system undamped, underdamped, overdamped or critically damped?
Since 0 < ζ = 0.894 < 1, =⇒ the system is underdamped.

(iv) In case of underdamped system, find the pseudo-natural frequency of the system.
In case of underdamped system, the damped frequency ωd is called pseudo-frequency of the
system.

ωd = ωo

√
1− ζ2 = 1

(v) Solve the differential equation for the given initial or boundary conditions. In case of sinusoidal
solutions, write the solution in A cos(wt− φ) form.

y(t) = e−2t(c1 cos t+ c2 sin t)

y(1) = e−2(c1 cos(1) + c2 sin(1))
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0.0731c1 + 0.114c2 = 3 (1)

y′(t) = −e−2tc1(2 cos t+ sin t)− e−2tc2(2 sin t− cos t)

Putting y′(1) = 9, we get
0.2601c1 − 0.155c2 = 9 (2)

Solving Eq(1) and Eq(2), we get
c1 = −81.43

c2 = 78.53

Finally we get,
y(t) = e−2t(−81.43 cos(t) + 78.53 sin(t))

y(t) = 113.13e−2tcos(t− 2.374)

(vi) Sketch the graph of the solution.

Figure 1: Underdamped Response.

(b) y′′ − 4y′ + 4y = 0, y(1) = 1 and y′(1) = 1

(i) Determine whether system is stable, marginally stable or unstable.
The char. Eqn. is given as

S(r) = r2 − 4r + 4

Roots of the above char eqn are
r1 = r2 = r = 2

Since r = 2>0, =⇒ System is unstable.

(ii) Solve the differential equation for the given initial or boundary conditions. In case of sinusoidal
solutions, write the solution in A cos(wt− φ) form.

y(t) = (c1 + c2t)e
2t

y(1) = (c1 + c2)e
2

(c1 + c2)e
2 = 1 (3)

y′(t) = 2e2tc1 + e2t(2t+ 1)c2

Putting y′(1) = 1, we get
2e2c1 + 3e2c2 = 1 (4)
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Solving Eq(3) and Eq(4), we get
c1 = 0.271

c2 = −0.1353

Finally we get,
y(t) = (0.271− 0.1353t)e2t

(iii) Sketch the graph of the solution.

Figure 2: Unstable System Response.

(c) y′′ + 5y′ + 6y = 0, y(0) = 1 and y′(0) = 0

(i) Determine whether system is stable, marginally stable or unstable.
The char. Eqn. is given as

S(r) = r2 + 5r + 6

Roots of the above char eqn are
r1 = −2

r2 = −3

Since r1 = −2 < 0 and r2 = −3 < 0 =⇒ System is stable.

(ii) For stable and marginally stable systems, find value of natural frequency (ωo), damping ratio
(ζ) and quality factor (Q) .
As we know the general equation

y′′ + 2ζωoy
′ + ω2

oy = 0

By comparing the coefficients. we get

ωo =
√

6 = 2.45

2ζωo = 5 =⇒ ζ =
5

2
√

6
= 1.021

To find quality factor, the genral equation is given as

y′′ +
ωo

Q
y′ + ω2

o

ωo

Q
= 5 =⇒ Q =

√
6

5
= 0.489
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(iii) Is the system undamped, underdamped, overdamped or critically damped?
Since ζ = 1.021 > 1, =⇒ the system is Overdamped.

(iv) Solve the differential equation for the given initial or boundary conditions. In case of sinusoidal
solutions, write the solution in A cos(wt− φ) form.

y(t) = c1e
−2t + c2e

−3t

y(0) = c1 + c2

c1 + c2 = 1 (5)

y′(t) = −2c1e
−2t − 3c2e

−3t

Putting y′(0) = 0, we get
−2c1 − 3c2 = 0 (6)

Solving Eq(5) and Eq(6), we get
c1 = 3

c2 = −2

Finally we get,
y(t) = 3e−2t − 2e−3t

(v) Sketch the graph of the solution.

Figure 3: Overdamped Response.

(d) 4y′′ + y′ − 4y = 0, y(0) = 0 and y′(0) = 1

(i) Determine whether system is stable, marginally stable or unstable.
The char. Eqn. is given as

S(r) = 4r2 + r − 4

Roots of the above char eqn are
r1 = 0.883

r2 = −1.133

Since r1 = 0.883 > 0 =⇒ System is unstable.

(ii) Solve the differential equation for the given initial or boundary conditions. In case of sinusoidal
solutions, write the solution in A cos(wt− φ) form.

y(t) = c1e
0.883t + c2e

−1.133t

y(0) = c1 + c2
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c1 + c2 = 0 (7)

y′(t) = 0.883c1e
0.883t − 1.133c2e

−1.133t

Putting y′(0) = 1, we get
0.883c1 − 1.133c2 = 1 (8)

Solving Eq(7) and Eq(8), we get
c1 = 0.496

c2 = −0.496

Finally we get,
y(t) = 0.496e0.883t − 0.496e−1.133t

(iii) Sketch the graph of the solution.

Figure 4: Unstable System Response.

(e) y′′ + y′ − 6y = 0, y(0) = 10 and y′(0) = 0

(i) Determine whether system is stable, marginally stable or unstable.
The char. Eqn. is given as

S(r) = r2 − r − 6

Roots of the above char eqn are
r1 = 3

r2 = −2

Since r1 = 3 > 0 =⇒ System is unstable.

(ii) Solve the differential equation for the given initial or boundary conditions. In case of sinusoidal
solutions, write the solution in A cos(wt− φ) form.

y(t) = c1e
3t + c2e

−2t

y(0) = c1 + c2

c1 + c2 = 10 (9)

y′(t) = 3c1e3t − 2e−2t

Putting y′(0) = 0, we get
3c1 − 2c2 = 0 (10)

Solving Eq(9) and Eq(10), we get
c1 = 4
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c2 = 6

Finally we get,
y(t) = 4e3t + 6e−2t

(iii) Sketch the graph of the solution.

Figure 5: Unstable System Response.

Problem 2

Figure 6 shows a cart of mass m attached to a fixed spring with stiffness k. The cart is shown in its
equilibrium position but it can have a displacement x towards right or left causing a resulting extension
or compression in the spring. Given that m = 3 kg and k = 12 Nm−1, use these values for all parts of
this problem unless stated otherwise.

Figure 6: Ideal spring mass system with no friction or damping

(a) Write down a linear second order differential equation for the system, in terms of m, k, and x.

The differential equation of the above system can be written as

m
d2x

dt2
+ kx = 0

(b) The cart is pulled 0.5 m to the right and released at t = 0. It is expected to oscillate about its
equilibrium position with a natural frequency ω0.

(i) Find x(t) for t ≥ 0 by solving the differential equation. What is the natural frequency ω0?
Converting the differential equation to its standard form

d2x

dt2
+
k

m
x = 0. (11)

The characteristic equation is

S(r) = r2 +
k

m
= 0
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=⇒ r = ±i
√
k

m
= ±i

√
12

3
= ±2i

Because the equation is homogeneous, the general solution can be written as

x(t) = c1 cos 2t+ c2 sin 2t

The cart is pulled 0.5 m to the right and released from rest at t = 0, which means that the
initial conditions are x(0) = 0.5, x′(0) = 0

c1 cos 0 + c2 sin 0 = 0.5 =⇒ c1 = 0.5

x(t) = 0.5 cos 2t+ c2 sin 2t

x′(t) = − sin 2t+ 2c2 cos t

x′(0) = − sin 0 + 2c2 cos 0 = 0 =⇒ c2 = 0

x(t) =
1

2
cos 2t.

Natural frequency ω0 = 2, i.e. the coefficient of t in cos 2t.

(ii) Determine damping and stability condition of system.
Damping Condition: Since the damping ratio ζ = 0 =⇒ the system is undamped i.e No
Damping.
Stability Condition: Since α = 0 =⇒ the system is maginally stable.

(iii) Sketch the graph of x(t), clearly showing the amplitude and time period of the oscillation.

Figure 7: Undamped Response.

Suppose that now a dashpot with damping coefficient b is attached to the cart as shown in Figure 8.
We have three dashpots of three different damping coefficients available. We attach the dashpots one
by one and examine the effect of each dashpot on the motion of the cart.

Figure 8: Spring mass system connected to a dashpot attached for damping
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(a) Write down a linear second order differential equation for this system, in terms of m, b, k and x.
Since there is a dashpot attached, there will be drag force (damping force) Fd = −bdxdt .Incorporating
this damping term, the differential equations becomes

m
d2x

dt2
+ b

dx

dt
+ kx = 0

(b) First, the dashpot with b = 6 kgs−1 is attached to the cart.

(a) Determine whether system is stable, marginally stable or unstable.
Converting the differential equation to its standard form

d2x

dt2
+

b

m

dx

dt
+
k

m
x = 0

The characteristic equation is

P (r) = r2 +
b

m
r +

k

m
= 0

=⇒ r =
−b±

√
b2 − 4km

2m
= − b

2m
±
√

b2

4m2
− k

m

For k = 12, m = 3, b = 6
r = −1± i

√
3 = α± iωd

Since α = −1 < 0 =⇒ system is stable.

(b) For stable and marginally stable system, find value of (ωo) and damping ratio (ζ).
The DE in std. form is

x′′ + 2x′ + 4 = 0

the general form of DE is
y′′ + 2ζωoy

′ + ω2
oy = 0

By camparing the coefficients, we get
ωo = 2

2ζωo = 2 =⇒ ζ = 0.5

(c) What is the damping condition of system (undamped, underdamped, overdamped or critically
damped).
Since 0 < ζ = 0.5 < 1 =⇒ the system is underdamped.

(d) The cart is once again pulled 0.5 m to the right and released at t = 0. Find x(t) for t ≥ 0 by
solving the differential equation and sketch the graph of x(t).

Since r = −1± i
√

3. the general solution is

x(t) = e−t
(
c1 cos

√
3t+ c2 sin

√
3t
)

Using initial conditions x(0) = 0.5 and x′(0) = 0,

x(0) = c1 cos 0 + c2 sin 0 = 0.5 =⇒ c1 = 0.5

x′(0) = −c1 +
√

3c2 = 0 =⇒ c2 =
1

2
√

3

x(t) =
1

2
e−t
(

cos
√

3t+
1√
3

sin
√

3t

)
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It can be converted into the form

x(t) =
1

2
e−t

√(
12 +

1

3

)
cos

(√
3t− tan−1

1√
3

)

x(t) =
1√
3
e−t cos

(√
3t− π

6

)
Damped natural frequency ωd =

√
3 rad s−1.

Figure 9: Underdamped Response.

(c) Repeat part (b) for the second dashpot with b = 12 kgs−1.

(a) Determine whether system is stable, marginally stable or unstable.
For k = 12, m = 3, b = 12, here we get repeated roots as follow;

r1 = r2 = r = −2

Since r = −2 < 0 =⇒ system is stable.

(b) For stable and marginally stable system, find value of (ωo) and damping ratio (ζ).
The DE in std. form is

x′′ + 4x′ + 4 = 0

the general form of DE is
y′′ + 2ζωoy

′ + ω2
oy = 0

By camparing the coefficients, we get
ωo = 2

2ζωo = 4 =⇒ ζ = 1

(c) What is the damping condition of system (undamped, underdamped, overdamped or critically
damped).
Since ζ = 1 =⇒ the system is Critically damped.

(d) The cart is once again pulled 0.5 m to the right and released at t = 0. Find x(t) for t ≥ 0 by
solving the differential equation and sketch the graph of x(t).

Since r = −2. the general solution is

x(t) = (c1 + c2t)e
−2t

Using initial conditions x(0) = 0.5 and x′(0) = 0,

x(0) = 0.5 =⇒ c1 = 0.5
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x′(0) = 0 =⇒ c2 = 1

x(t) =
1

2
e−2t(1 + 2t)

Figure 10: Critically damped Response.

(d) Repeat part (b) for the third dashpot with b = 24 kgs−1.

(a) Determine whether system is stable, marginally stable or unstable.
For k = 12, m = 3, b = 24, here we get following roots;
r = −4± 2

√
3 Since r1 < 0 and r2 < 0 =⇒ system is stable.

(b) For stable and marginally stable system, find value of (ωo) and damping ratio (ζ).
The DE in std. form is

x′′ + 8x′ + 4 = 0

the general form of DE is
y′′ + 2ζωoy

′ + ω2
oy = 0

By camparing the coefficients, we get
ωo = 2

2ζωo = 8 =⇒ ζ = 2

(c) What is the damping condition of system (undamped, underdamped, overdamped or critically
damped).
Since ζ = 2 > 1 =⇒ the system is Overdamped.

(d) The cart is once again pulled 0.5 m to the right and released at t = 0. Find x(t) for t ≥ 0 by
solving the differential equation and sketch the graph of x(t).

Since r = −4± 2
√

3. the general solution is

x(t) = c1e
(−4−2

√
3)t + c2e

(−4+2
√
3)t

Using initial conditions x(0) = 0.5 and x′(0) = 0,

x(0) = 0.5 =⇒ c1 + c2 = 0.5

x′(0) = 0 =⇒
(
−4− 2

√
3
)
c1 +

(
−4 + 2

√
3
)
c2 = 0

=⇒ c1 = −0.0387, c2 = 0.5387

x(t) = e−4t(−0.0387e−2
√
3t + 0.5387e2

√
3t)
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Figure 11: Overdamped Response.

(e) Comment on the response of x(t) find in part (b,c and d). Explain your answer.
In part b, when b = 6, the system was underdamped, from the solution curve we can see that
initially there are some oscillations in the response that decay with time.
In part c, when b =12, the system was critically damped, from the solution curve we can see that
there are no oscillations in the response and the system settles to its mean position very fast.
In part d, when b = 24, the system was Overdamped, from the solution curve we can see that there
are no oscillations in the response and the system takes some time to settles to its mean position.

(f) Which x(t) will settle in minimum time?
For b = 12, the oscillations are critically damped hence the cart settles fastest to its equilibrium
position.
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Problem 3

In this problem you will understand the concept of tuning a circuit to a frequency of the received signal,
which can be the frequency of a radio station or the frequency at which your mobile service provider
transmits.

(a) LC circuit (b) RLC circuit

Figure 12

(a) Figure 12(a) shows an LC circuit driven by a variable voltage source V (t), which causes a current
I(t) to flow through the circuit.

(i) From your notes, write down the differential equation for current I in the circuit, in terms of
L, C and V . Convert the equation into its standard form.
Using Kirchhoff’s Voltage Law, we can write the associated differential equation as

LI ′′(t) +
1

C
I(t) = V ′(t)

=⇒ I ′′(t) +
1

LC
I(t) =

V ′(t)

L
(12)

(ii) Write down the characteristic equation S(r) for the differential equation and find its roots in
terms of L, C and i.
Characteristic equation associated with homogeneous equation of Eq. (12) is

S(r) = r2 +
1

LC
= 0

=⇒ r = ±i 1√
LC

(iii) Using your answer to (ii), find the natural frequency ω0 of the circuit?
The complementary solution is going to be

yc(t) = c1 cos

(
1√
LC

t

)
+ c2 sin

(
1√
LC

t

)

Hence, ω0 =
1
√
LC

is the natural frequency.

(iv) Rewrite the differential equation in terms of ω0, instead of L and C.

Hence the equation will come

I ′′(t) + ω2
0I(t) =

V ′(t)

L
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(v) Let V (t) = cosωt, where ω is the driving frequency. At what frequency ω does the resonance
happen, i.e. the amplitude of current I(t) grows to a maximum value?

The LC circuit is being driven by a sinusoidal electromotive force (voltage) of frequency ω.
If this frequency is equal to the natural frequency ω0 of the LC circuit, then resonance will
occur. i.e ω = ωo = 1√

LC

(vi) Given L = 1 H and C = 0.125 F, calculate the value of the resonant frequency.

ω0 =
1√
LC

=
1√

(1)(0.125)
= 2
√

2 rad s−1

(vii) Find the expression for particular solution of current I(t) in the circuit at resonant frequency,
and sketch its graph.

I ′′(t) + ω2
0I(t) =

V ′(t)

L

Because ω0 = 2
√

2, V (t) = cosωt, V ′(t) = −ω sinωt and L = 1,

I ′′(t) + 8I(t) = −ω sinωt = −ωIm{eiωt}

Complex particular solution

Ĩp =
−ωeiωt

P (iω)

But at resonant frequency, ω = ω0 and hence P (iω0) = 0. So, the complex particular solution
would instead be

Ĩp =
−ω0te

iω0t

P ′(iω0)
=
−2
√

2tei2
√
2t

4
√

2i
=

1

2
itei2

√
2t =

1

2
it(cos 2

√
2t+ i sin 2

√
2t)

The particular solution of can written as

Ip(t) = Im
{
Ĩp

}
= −1

2
t sin 2

√
2t

Figure 13: Response at Resonance
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(b) Figure 12(b) shows an RLC circuit driven by a variable voltage source V (t), which causes a current
I(t) to flow through the circuit. By varying the values of R, L or C, this circuit can be tuned to
the frequency of a signal received as voltage V (t).

(i) From your notes, write down the differential equation for current I in the circuit, in terms of
R, L, C and V . Convert the equation into its standard form.
Now there is resistance in circuit. So including the effect of R, we can write the associated
differential equation as

LI ′′(t) +RI ′(t) +
1

C
I(t) = V ′(t)

I(s) =
1
Ls

s2 + R
Ls+ 1

LC

V (s)

=⇒ I ′′(t) +
R

L
I ′(t) +

1

LC
I(t) =

V ′(t)

L
(13)

(ii) Using your notes, rewrite this equation in terms of quality factor Q and natural frequency ω0.

I ′′(t) +
ω0

Q
I ′(t) + ω2

0I(t) =
V ′(t)

L
(14)

where
ω0

Q
=
R

L
and ω0 =

1
√
LC

(iii) Write down the characteristic equation S(r) for the differential equation and find its roots in
terms of Q, ω0 and i.

S(r) = r2 +
ω0

Q
r + ω2

0 = 0

=⇒ r = − ω0

2Q
± iω0

√
1− 1

4Q2

(iv) What is the damped natural frequency ωd of the circuit, in terms of Q and ω0?

ωd = ω0

√
1− 1

4Q2

(v) For V (t) = cosωt, R = 2 Ω, L = 1 H and C = 0.125 F, evaluate ωd. Use these values of R, L
and C for the remaining parts of this problem.

ω0

Q
=
R

L
=⇒ Q = ω0

L

R
=
√

2

=⇒ ωd = ω0

√
1− 1

4Q2
=
√

7 rad s−1

(vi) Find the steady-state current I(t) in the circuit. (Recall that the steady-state solution is the
solution as t→∞. For stable systems, steady-state solution is equal to the particular solution
because the complementary solution approaches 0 as t→∞.)
Using the given values for R, L and C, differential equation can be written as

I ′′(t) + 2I ′(t) + 8I(t) = −ω sinωt
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The characteristic equation will be

S(r) = r2 + 2r + 8

and f(t) is defined as
f(t) = −ω sinωt = Im

{
−ωeiωt

}
Hence the particular solution Ip(t) will be

Ip(t) = Im

{
−ωeiωt

S(iω)

}
= Im

{
−ωeiωt

8− ω2 + 2iω

(
8− ω2 − 2iω

8− ω2 − 2iω

)}
= Im

{
−ω(cosωt+ i sinωt)(8− ω2 − 2iω)

ω4 − 12ω2 + 64

}
=

ω

ω4 − 12ω2 + 64

(
2ω cosωt− (8− ω2) sinωt

)

(vii) For this circuit, its resonant frequency ωr is not exactly equal to the damped natural frequency
ωd. Resonance happens at a slightly different frequency. In this part, you will calculate ωr.
Convert I(t) into the form I(t) = A(ω) cos (ωt− φ(ω)), where A(ω) and φ(ω) are functions
of ω. Resonance will happen when the value of A(ω) is maximized. Find the value of ω for
which A is maximized. This is the resonant frequency ωr for the circuit. (You do not need to
evaluate φ)

Ip(t) =
ω

ω4 − 12ω2 + 64

(
2ω cosωt− (8− ω2) sinωt

)
≡ A cos (ωt− φ)

=⇒ A =
ω

ω4 − 12ω2 + 64

√
(2ω)2 + (8− ω2)2 =

ω

ω4 − 12ω2 + 64

√
ω4 − 12ω2 + 64

=⇒ A(ω) =
ω√

ω4 − 12ω2 + 64
=

ω

ω

√
ω2 − 12 +

64

ω2

=
1√

ω2 − 12 +
64

ω2

Let B(ω) = ω2 − 12 +
64

ω2
. Maximizing A(ω) is the same as minimizing B(ω). To find the

stationary points of B(ω),
dB

dω
= 2ω − 128

ω3
= 0

ω4 = 64 =⇒ ω = 2
√

2

Because
d2B

dω2
= 2 +

384

ω4
is always positive, the stationary point is a minimum.

So, the frequency at which B(ω) is minimized and hence A(ω) is maximized is the resonant
frequency ωr = 2

√
2 rad s−1.

(viii) Suppose the radio signal received as V (t) is at a frequency f = 2 Hz (recall that ω = 2πf).
The RLC circuit is said to be tuned to the received radio signal when the amplitude of current
I(t) through the circuit is maximum. This happens when the resonant frequency fr of the
circuit equals 2 Hz, the frequency of the radio signal. The resonant frequency of the circuit
can be changed by varying the values of either R, L or C. Suppose that we can only control
the value of C. Keeping R = 2 Ω, L = 1 H, calculate the value of C for which the resonant
frequency of the circuit fr = 2 Hz and the circuit will be tuned to the received radio signal.
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In class, we discussed that for damped systems the resonance frequency ωr is given as ωr =
ωo

√
1− 2ζ2, but in this problem we are getting ωr = ωo. Actually in class we solved problems

invloving sinωt or cosωt as forcing function but here we have ω multiplied by sinωt i.e ω sinωt
here ωr is such that it is shifted to ωo. If we look at the value of ωr, we find that ωr = ω0 = 2

√
2.

ω0 =
1√
LC

=
1√
1C

= 2
√

2

=⇒ C = 0.125 F
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