
MT232: Differential Equations

Homework 2 Solution
Due Fri Oct 12, 9:00 AM Fall 2018

Problem 1

When certain kinds of chemicals are combined, the reactions are autonomous and the rate at which the
new compound is formed is modeled by the differential equation

dX

dt
= k(α−X)(β −X)

where k > 0 is a constant of proportionality and β > α > 0. Here X(t) denotes the number of grams
of the new compound formed in time t

(a) Use a phase portrait of the differential equation to predict the behavior of X(t) as t→∞
For equilibrium points

dX

dt
= 0

k(α−X)(β −X) = 0 =⇒ X = α,X = β

Now for stability

0 < X < α =⇒ dX

dt
= k(+)(+) > 0

α < X < β =⇒ dX

dt
= k(−)(+) < 0

X > β =⇒ dX

dt
= k(−)(−) > 0

therefore α is stable and β is unstable.

(b) Consider the case when α = β. Use a phase portrait of the differential equation to predict the
behavior of X(t) as t→∞ when X(0) = α > 0.
Here α = β, the system becomes

dX

dt
= k(α−X)2

the equilibrium point is only α

0 < X < α =⇒ dX

dt
= k(+)(+) > 0

X > α =⇒ dX

dt
= k(+)(+) > 0

hence the equilibrium point α becomes semi stable
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Figure 1: Phase portrait

(a) (b)

Figure 2: Solution Curves for (a) and (b)

(c) Find the explicit solution of the DE in the case when k = 1 and α = β = 5 for

(i) X(0) =
α

2
(ii) X(0) = 2α.

Graph these two solutions.
This DE can be solved by Separation of Variables, when k = 1 and α =

β = 5. The general solotion of DE is given by

dX

dt
= (5−X)2

dX

(5−X)2
= dt

Integrating on both sides, we get;
1

5−X
= t+ c

5−X =
1

t+ c

X(t) = 5− 1

t+ c

for (i) X(0) = α/2, c = 0.4, so the solution becomes

X(t) = 5− 1
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for (ii) X(0) = 2α, c = -0.2, so the solution becomes

X(t) = 5− 1

t− 0.2

(a) (b)

Figure 3: Graphs of above cases

(d) Does the behavior of the solutions as t→∞ agree with your answers to part (b)?
Yes, from the above two graphs it is clearly shown that the behavior of the solution agrees with
answers in part (b). Mathematically it can be illustrated as below;

lim
t→∞

X(t) = 5− 1

t− 0.2

X(t) = 5

Problem 2

Consider a body is falling from the top of the tower of Pisa under the influence of gravity and air
resistance. The mass of the body is m, v is its speed, g is the acceleration due to gravity and b is the
air drag coefficient.

(a) Derive the DE of the above model. (Note: Take downward direction positive)
The DE of the above model is given by

ma = Fnet

Taking downward direction positive
ma = mg − bv

ma = mg − bv

m
dv

dt
= mg − bv

(b) Show that the differential equation represents an autonomous system.
The DE in standard form is given by

dv

dt
= g − b

m
v

Since the right hand side of the above DE does not explicitly depend on independent variable t,
hence the DE is autonomous.
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(c) Find and classify the equilibrium point of the system and draw its phase portrait.

At equilibrium points,
dv

dt
= 0. So the required equilibrium point is

g − b

m
v = 0

v =
mg

b

Figure 4: Phase portrait for 2(b)

For v >
mg

b
, let’s assume v =

2mg

b

dv

dt
= g − b

m

(
2mg

b

)
= −g < 0

Hence the phase arrow will point downwards.

For v <
mg

b
, let’s assume v = 0

dv

dt
= g − b

m
(0) = g > 0

Hence the phase arrow will point upwards. Both arrows are pointing towards the equilibrium point,
hence the equilibrium point is stable.

(d) Now consider that from the top of the tower of Pisa, a ping-pong ball of mass 5 g is being dropped
from rest. What happens to the speed of the ball during the fall, considering the coefficient of air
drag b = 0.47?
At equilibrium point,

v =
mg

b
=

(0.005)(9.81)

0.47
= 0.10426 ms−1

The speed of ball increases from rest during the fall until it approaches terminal speed or hits the
ground. But because the terminal speed is very small and Tower of Pisa is tall enough, it most
definitely approached the terminal speed before hitting the ground.

Figure 5: Phase portrait for 2(d)
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(e) In another trial, the ball is shot down at an initial speed of 5 ms−1. Now during the fall, what
happens to the speed of the ball?
The equilibrium point will stay the same. Because 5 > 0.10426, the speed of the ball decreases
during the fall until it approaches terminal speed or hits the ground. But because the terminal
speed is close to initial speed 5 and Tower of Pisa is tall enough, it most definitely approached the
terminal speed before hitting the ground.

Figure 6: Phase portrait for 2(e)

(f) In yet another trial, a bouncy ball is dropped from rest which is of the same shape and size but 10
times heavier than the ping-pong ball. Does this ball reach the ground faster than the ping-pong
ball? Explain.
Terminal velocity for this 50 g ball

v =
(0.05)(9.81)

0.47
= 1.0426ms−1.

Yes, this ball reaches the ground much faster because of its higher terminal velocity which will be
achieved soon after dropping the ball.

(g) But if we drop two balls of masses 20 kg and 200 kg from the tower at once, why do they reach the
ground almost at the same time, although one is 10 times heavier than the other?
Terminal velocity for 10 kg ball would be

v =
(10)(9.81)

0.47
= 208.7ms−1,

and terminal velocity for 100 kg ball would be

v =
(100)(9.81)

0.47
= 2087ms−1,

in both cases terminal velocoties are very high. During a drop from such a height, both of these
balls will be far from reaching there respective terminal velocities before hitting the ground. Hence
they will fall over the same ranges of speed and hence hit the ground almost at the same time.

Problem 3

Consider the following differential equation with initial condition (1, 2).

x
dy

dx
+ y = 2y2

Solve the differential equation using an appropriate method you have studied so far until Oct 5.
Solution: Separation of Variables

dy

dx
=
y(2y − 1)
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dy

y(2y − 1)
=
dx

x

The left hand side of the above equation is converted in to partial fractions as follow;

1

y(2y − 1)
= −1

y
+

2

(2y − 1)

(−1

y
+

2

(2y − 1)
)dy =

1

x
dx

Integrating on both sides, we get

− ln y + ln(2y − 1) = lnx+ c1

After rearranging,
2y − 1

y
= cx

Hence the general solution is

y =
1

2− cx
After putting the initial condition (1,2), we get

y =
2

4− 3x

Problem 4

Figure 7(a) shows a circuit in which an inductor of inductance L is connected in series with a resistor
R. Let’s assume that the voltage across inductor and the current flowing through the inductor at time
t are v(t) and i(t) respectively. Given that R = 2Ω and L = 0.2H.

(a) (b)

Figure 7: RL circuits for Problem 4

(a) Using Kirchhoff’s Voltage Law, write down the differential equation of voltage v(t) in the circuit
given in Figure 7(a).

v(t) + VR(t) = 0

v(t) + i(t)R = 0

Since i(t) = 1
L

∫
v(t)dt

v(t) +
R

L

∫
v(t)dt = 0

dv(t)

dt
+
R

L
v(t) = 0
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(b) At t = 0, a current of 5 A was passing through the inductor. Without solving the differential
equation, sketch VR for t = 0 to t→∞. Mark clearly on your graph, the values of VR at t = 0 and
t→∞.
The plot can be drawn using a phase portrait because

dv(t)

dt
= −v(t)

R

L

represents an autonomous system. To find the equilibrium points

dv(t)

dt
= −v(t)

R

L
= 0

=⇒ v(t) = 0

is a single equilibrium point. For v > 0, dv
dt < 0 and for v < 0, dv

dt > 0. Hence this equilibrium point
is stable. For initial condition i(0) = 5,

v(t) + i(t)R = 0

v(0) + i(0)R = 0

v(0) = −i(0)R = −10

Since VR(t) = −v(t), Plot of v(t) and VR(t) will be as follow;

(a) (b)

Figure 8: Plots of v(t) and VR(t)

(c) For the conditions in (a), guess the exact solution of the differential equation, evaluating any
constants involved.

dv(t)

dt
= −v(t)

R

L
= −10v(t)

=⇒ v(t) = ce−10tv(0) = c = −10v(t) = −10e−10t

is the solution of the differential equation. Voltage across the resistor

VR(t) = −v(t) = 10e−10t.

Now a voltage source V (t) is added in series to the circuit as shown in Figure 7(b).

(d) Write down the differential equation of voltage v(t) in the circuit given in Figure 7(b).

v(t) + VR(t) = V (t)

Similarly we can make DE as follows;

dv(t)

dt
+
R

L
v(t) =

V (t)

L
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(e) The voltage source is set to give a constant DC voltage of V (t) = 5 V. Given that initially a current
of 1 A is passing through the circuit. Without solving the differential equation, sketch VR for t = 0
to t→∞. Mark clearly on your graph, the values of VR at t = 0 and t→∞.
The plot can be drawn using a phase portrait because

dv(t)

dt
=
V (t)

L
− v(t)

R

L
= 25− 10v(t)

represents an autonomous system. To find the equilibrium points

dv(t)

dt
= 25− 10v(t) = 0

=⇒ v(t) = 2.5

is a single equilibrium point. For v > 2.5, dv
dt < 0 and for v < 2.5, dv

dt > 0. Hence this equilibrium
point is stable. For initial condition i(0) = 1,

v(0) + i(0)R = V (0)

v(0) + (1)(2) = 5

v(0) = 5− 2 = 3

Since VR(t) = V (t)− v(t) = 5 - v(t). Plots of v(t) and VR(t) will be as follow;

(a) (b)

Figure 9: Plots of v(t) and VR(t)

(f) Express this linear differential equation in the standard form discussed in the lecture. For V (t) = 5
V, solve the differential equation using an integrating factor and find the voltage signal VR(t),
evaluating any constants involved. Verify that your solution agrees with your plot in (c).

dv(t)

dt
= 25− 10v(t)

dv

dt
+ 10v = 25

µ
dv

dt
+ 10µv = 25µ

Integrating factor µ = e
∫
10dt = e10t.

e10t
dv

dt
+ 10e10tv = 25e10t

8 of 10



d

dt
(e10tv) = 25e10t

e10tv = 25

∫
e10tdt+ c

e10tv(t) = 25
e10t

10
+ c

v(t) = 2.5 + ce−10t.

Using the initial condition v(0) = 3,

v(0) = 3 = 2.5 + c =⇒ c = 0.5

v(t) = 2.5 + 0.5e−10t.

VR(t) = 5− v(t) = 2.5− 0.5e−10t.

As VR(0) = 2.5−0.5 = 2 and as t→∞, VR(t)→ 2.5, hence this matches with the plot drawn using
phase portrait.

(g) The voltage source is now precisely set to give a sinusoidal voltage V (t) = sin 5t. Given that initially
no current is passing through the circuit, solve the differential equation using an integrating factor
and find the voltage signal VR(t), evaluating any constants involved.

dv(t)

dt
+ v(t)

R

L
=
V (t)

L

dv(t)

dt
+ 10i(t) = 5 sin 5t

µ
dv

dt
+ 10µv = 5µ sin 5t

Integrating factor µ = e
∫
10dt = e10t.

e10t
dv

dt
+ 10e10tv = 5e10t sin 5t

d

dt
(e10tv) = 5e10t sin 5t

e10tv =

∫
5e10t sin 5t dt

e10tv =
e10t

5
(2 sin 5t− cos 5t) + c

v(t) =
1

5
(2 sin 5t− cos 5t) + ce−10t

Using the given initial condition i(0) = 0 =⇒ v(0) = V (0)− I(0)R = sin 0− 0 = 0,

v(0) =
1

5
(2 sin 0− cos 0) + c =⇒ c =

1

5

v(t) =
1

5
(2 sin 5t− cos 5t+ e−10t)

VR(t) = sin 5t− v(t) =
1

5
(3 sin 5t+ cos 5t− e−10t)
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(h) Imagine that this circuit is placed somewhere unattended and a toddler grabs this opportunity
and starts monkeying with the circuit. She sets the voltage source at an arbitrary value of
V (t) = 9.78 + 6.54 sin(5t). Only using your solutions to (d) and (e), find VR(t) for this case.
Be careful with the constants involved because now we do not know the initial current in the circuit.

For input V (t) = 5, output VR(t) = 2.5−c1e−10t. Because the system is linear, for input V (t) = 9.78,
output VR(t) = 9.78(2.5− c1e−10t).
Similarly, because for input V (t) = sin 5t, output VR(t) = 1

5(3 sin 5t + cos 5t − c2e
−10t), if in-

put is V (t) = 6.54 sin 5t, output becomes VR(t) = 6.54
5 (3 sin 5t + cos 5t − c2e−10t). Now for input

V (t) = 9.78 + 6.54 sin 5t, the output

VR(t) = 9.78(2.5− c1e−10t) +
6.54

5
(3 sin 5t+ cos 5t− c2e−10t)

VR(t) = 24.45 + 1.308(3 sin 5t+ cos 5t) + (−1.308c2 − 9.78c1)e
−10t

VR(t) = 24.45 + 1.308(3 sin 5t+ cos 5t) + ce−10t

The constant c cannot be evaluated because we do not know the initial state of the circuit.

Figure 10: Block Diagram of a LinearSystem

10 of 10


