

Information Technology University Department of Electrical Engineering

MT232: Differential Equations				
Course Code	MT232	Semester	3rd	
Credit Hours	3	Term	Fall 2017	
Instructor	Usama Bin Sikandar	Pre-reqs	Calculus and Analytic Geometry	
E-mail	<u>usama.sikandar@itu.edu.pk</u>	Department	Electrical Engineering	
Office	Room#9, 4th floor	Discipline	Mathematics	
Instructor	тва	Teaching	Mohsin Ali, Amna Maqbool	
Office Hours	IDA	Assistants		

Course Description:

This course explores how to solve linear first and second order linear differential equations, with a focus on linear dynamical systems modeling and their time evolution. Students will also be introduced to partial differential equations and Fourier methods towards the end of the course.

Course Outcomes/Objectives:

On the completion of the course, the student will be able to demonstrate the following:

- How to solve first order differential equations
- How to solve second order linear differential equations with constant coefficients
- Solve the differential equations and plot the solutions using MATLAB
- Sketch the solution of differential equation using phase plane analysis
- Knowledge of basic Fourier methods for the solutions of partial differential equations

Books:	
Text Books:	1. A first course in Differential Equations with modeling applications (10 th edition) by
	Dennis G. Zill.
	2. Fundamentals of Differential Equations, by R. Kent Nagle, Edward B. Saff, and Arthur
	David Snider
Reference	Advanced Engineering Methods (10 th edition) by Erwin Kreyszig, Herbert Kreyszig and Edward
Books:	Norminton.

Weekly Lecture Breakdown :				
Week 1:	Introduction, Calculus review	Week 10:	Second order: variable coefficient	
Week 2:	Mathematical modeling	Week 11:	Laplace transform	
Week 3:	Phase portraits	Week 12:	Linear systems	
Week 4:	First order: numerical, separable	Week 13:	Linear systems	
Week 5:	First order: linear, Bernoulli	Week 14:	Modeling with PDEs	
Week 6:	First order: exact	Week 15:	Heat equation	
Week 7:	Second order: homogeneous	Week 16:	Wave equation	
Week 8:	Second order: nonhomogeneous	Week 17:	Fourier series	
Week 9:	Mid-term exam	Week 18:	Final exam	

Information Technology University Department of Electrical Engineering

Chapter	Topics	Lectures
•	Introduction	1
	Calculus Review	2
	Gradient	
	Stationary points	
	• Graphs	
	Functions	
Zill, Ch 1	Introduction to Differential Equations	2
,	 Mathematical modeling 	
	 Boundary-value problem 	
	Initial-value problem	
	 Methods of solving 	
	 Uniqueness and existence theorem 	
Zill, Ch 2	First order differential equations	6
,	Phase portraits	
	Euler's approximation	
	 Separable equations 	
	 Linear equations and integrating factor 	
	Bernoulli equation	
	Exact equations	
Kreyszig,	Second order linear equations	4
Ch 2	 Constant-coefficient homogeneous 	
	 Constant-coefficient nonhomogeneous 	
	 Damping ratio and Quality factor 	
	 Undetermined coefficients 	
	Mid Term Exam	
	 Resonance and beats 	3
	Frequency response	
	 Variation of parameters 	
	Cauchy-Euler	
	Wronskian matrix	
Zill, Ch 7	Laplace Transform method	2
	Exponential type' functions	
	 Solving first and second order linear differential equations 	
Zill, Ch 8	Linear Systems (2x2)	4
	 Homogeneous constant-coefficient 	
	Phase portraits	
	Complete' eigenvalues and `Defective' matrices	
	Variation of parameters	
	Reduction of order	
Nagle,	Partial differential equations	6
Ch 10	Heat equation	
	Wave equation	
	Fourier series	
	Final Exam	

Information Technology University Department of Electrical Engineering

Course Assessment Distribution:	
Quizzes:	15 %
Assignments:	10 %
Mid-term Exam:	30 %
Final Exam:	45 %

Grading Policy:	
Quiz Policy:	At the end of each recitation, there will be a graded quiz. The question framed is to test the concepts involved in last two lectures. Grading for quizzes will generally be on a scale of 0 to 10. There will be a total of roughly 15-16 quizzes, 2 of which will be dropped. There will be no make-up quiz whatsoever. So, plan your leaves accordingly.
Assignment Policy:	In order to develop comprehensive understanding of the subject, assignments will be given. Assignments late by one day will be penalized by 20%. After that nothing will be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment individually. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The problems in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.
Plagiarism:	ITU maintains a zero-tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the ITU plagiarism policy will lead to strict penalties including a failing grade in the course and referral to the disciplinary committee for a strict action, which may possibly lead to failing grades in all the courses of the semester.