Roll\# Student 1: \qquad Roll\# Evaluator 1: \qquad
Roll\# Student 2:
Roll\# Evaluator 2:
Note: Attempt the questions in chronological order.

Problem 1 /[10 Marks]

Find the derivative implicitly of the following functions
(a) $\cos (x y)=1+\sin (y)$
(b) $e^{y} \sin (x)=x+x y$

Problem 2
 \qquad / [10 Marks]

Find the equation of tangent line to the curve $y=f(x)$ at the point $\left(0, \frac{1}{2}\right)$

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

Problem 3

\qquad /[10 Marks]
By using the logarithmic differentiation, Find the derivtives of the following functions
(a) $y=\sqrt{\frac{x-1}{x^{4}+1}}$
(b) $y=x^{\cos (x)}$

Problem 4

 /[20 Marks]A balloon is rising vertically above a level, straight road at a constant rate of $1 \mathrm{ft} / \mathrm{sec}$. Just when the balloon is 65 ft above the ground, a bicycle moving at a constant rate of $17 \mathrm{ft} / \mathrm{sec}$ passes under it. How fast is the distance between the bicycle and balloon increasing 3 sec later?

The number of yeast cells in a laboratory culture increases rapidly initially but levels off eventually. The population is modeled by the function

$$
n=f(t)=\frac{a}{1+b e^{-0.7 t}}
$$

where is measured in hours. At time $t=0$ the population is 20 cells and is increasing at a rate of 12 cells per hour. Find the values of a and b. According to this model, what happens to the yeast population in the long run?

Problem 6 _ /[20 Marks]

Two carts, A and B, are connected by a rope 39 ft long that passes over a pulley P (see the figure). The point Q is on the floor 12 ft directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of $2 \mathrm{ft} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 5 ft from Q?

Figure 1: Pile of dump

