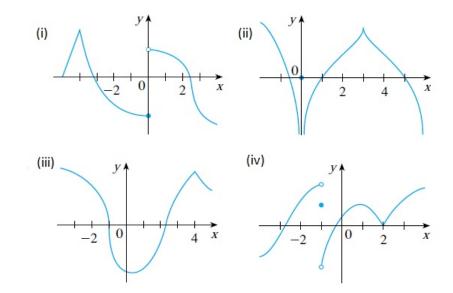

MT110: Calculus and Analytic Geometry		
Worksheet 7		
Due 3:25 pm, Fri Oct 19	Fall 201	8
Roll# Student 1:	Roll# Evaluator 1:	
Roll# Student 2:	Roll# Evaluator 2:	

Problem 1 [10 = 5 + 5]


You plugged your mobile phone into a charger. After some time you removed it from charging and started watching Youtube videos on it until it warns you "battery low". The graph shows C(t), the battery charge percentage as a function of time t elapsed (in hours).

- (a) What is the meaning of the derivative C'(t)?
- (b) Sketch the graph of C'(t). What does the graph tell you about charging and discharging?

Problem 2 [20 = 5 + 5 + 5 + 5]

The graph of f is given. State, with reasons, the values of x at which f is not differentiable.

Problem 3 [10 = 5 + 5]

The production cost (in dollars) of producing x units of a certain commodity is

$$P(x) = 5 + 10x + 2x^2$$

- (a) Find the average rate of change of P with respect to x when the production level is changed
 - (i) from x = 100 to x = 105
 - (ii) from x = 100 to x = 101
- (b) Find the instantaneous rate of change of P with respect to x when x = 100

Problem 4 [20 = 10 + 10]

(a) Determine whether f'(0) exists for

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

(b) Determine whether f'(-1) exists for f(x) = |x+1|.

Hint: Use the limit definition of derivative $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Problem 5 [10]

Find the derivative function of $f(x) = \sin 2x$ using the limit definition of derivative (a.k.a. derivative from first principles). Hint: $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$

Problem 6 [10 = 5 + 5]

Let

$$f(x) = \begin{cases} x^2 & x \le 2\\ mx + c & x > 2 \end{cases}$$

Find the values of m and c that makes f differentiable everywhere

Hint: Continuity is not sufficient for differentiability. It is just necessary.