MT110: Calculus and Analytic Geometry

Worksheet 6

Roll# Evaluator 1: _____

Due 3:15 pm, Fri Oct 12

Roll# Student 1: _____

Roll# Student 2: _____ Roll# Evaluator 2: _____

Problem 1 [10 marks]

Determine the continuity of the following functions at the points given below.

(a)

$$f(x) \begin{cases} \frac{x-6}{x-3} & x < 0\\ 2 & x = 0\\ \sqrt{4+x^2} & x > 0 \end{cases}, \text{ at } x = 0$$

Problem 2 $[10 = 2 \times 5 \text{ marks}]$

Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Also write the interval of continuity.

(a)

$$f(x) = \begin{cases} 1+x^2 & x \le 0\\ 2-x & 0 < x \le 2\\ (x-2)^2 & x > 2 \end{cases}$$

Problem 3 [5 marks]

For what value of a is f(x) continuous at every x?

$$f(x) = \begin{cases} x^2 - 1 & x < 3\\ 2ax & x \ge 3 \end{cases}$$

Problem 4 $[15 = 3 \times 5 \text{ marks}]$

Find the discontinuity of the following functions and classify them, if required then modify the function so that it becomes continuous. Also, find the interval of continuity. Note: Functions are defined on the real domain \mathbb{R}

(a)
$$f(x) = \frac{\sin x}{x}$$

(b) $f(t) = \frac{t^2 + 3t - 10}{t - 2}$
(c) $f(x) = \frac{x^2 - 16}{x^2 - 3x - 4}$
(d) $f(x) = \frac{x + 2}{\cos x}$
(e) $f(x) = \frac{x \tan x}{x^2 + 1}$

Problem 5 [10 marks]

If $f(x) = x^3 - 8x + 10$, show that there are values $c \in [a, b] \subset \mathbb{R}$ for which $f(c) = \pi$.

Problem 6 [10=5+5 marks]

(a) How close to -4 do we have to take x so that $\frac{1}{(x+4)^2} > 10000$

(b) Using $\epsilon - \delta$ definition to show that $\lim_{x \to -4} \left(\frac{1}{(x+4)^2} \right) = \infty$

Problem 7 $[10 = 4 \times 2.5 \text{ marks}]$

Evaluate the following limit

(a)
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} \right)$$

(b) $\lim_{x \to \infty} \left(e^{-x} + \frac{2\cos x}{x} \right)$
(c) $\lim_{x \to -\infty} \left(\frac{1 - e^{-x}}{1 + 2e^{-x}} \right)$
(d) $\lim_{x \to -\infty} \left(\frac{2x^2}{\sqrt{4x^4 + 1}} \right)$