Roll\# Student 1: \qquad Roll\# Evaluator 1: \qquad
Roll\# Student 2: \qquad Roll\# Evaluator 2:

Problem 1 [10 marks]

Determine the continuity of the following functions at the points given below.
(a)

$$
f(x)\left\{\begin{array}{ll}
\frac{x-6}{x-3} & x<0 \\
2 & x=0 \\
\sqrt{4+x^{2}} & x>0
\end{array}, \text { at } x=0\right.
$$

Problem 2 [10 $=2 \times 5$ marks]

Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Also write the interval of continuity.
(a)

$$
f(x)= \begin{cases}1+x^{2} & x \leq 0 \\ 2-x & 0<x \leq 2 \\ (x-2)^{2} & x>2\end{cases}
$$

Problem 3 [5 marks]

For what value of a is $f(x)$ continuous at every x ?

$$
f(x)= \begin{cases}x^{2}-1 & x<3 \\ 2 a x & x \geq 3\end{cases}
$$

Problem 4 [15 = 3×5 marks]

Find the discontinuity of the following functions and classify them, if required then modify the function so that it becomes continuous.Also, find the interval of continuity.
Note: Functions are defined on the real domain \mathbb{R}
(a) $f(x)=\frac{\sin x}{x}$
(d) $f(x)=\frac{x+2}{\cos x}$
(b) $f(t)=\frac{t^{2}+3 t-10}{t-2}$
(e) $f(x)=\frac{x \tan x}{x^{2}+1}$
(c) $f(x)=\frac{x^{2}-16}{x^{2}-3 x-4}$

Problem 5 [10 marks]

If $f(x)=x^{3}-8 x+10$, show that there are values $c \in[a, b] \subset \mathbb{R}$ for which $f(c)=\pi$.

Problem $6[10=5+5$ marks]

(a) How close to -4 do we have to take x so that $\frac{1}{(x+4)^{2}}>10000$
(b) Using $\epsilon-\delta$ definition to show that $\lim _{x \rightarrow-4}\left(\frac{1}{(x+4)^{2}}\right)=\infty$

Problem 7 [$10=4 \times 2.5$ marks]
Evaluate the following limit
(a) $\lim _{x \rightarrow \infty}\left(\frac{\sin x}{x}\right)$
(c) $\lim _{x \rightarrow-\infty}\left(\frac{1-e^{-x}}{1+2 e^{-x}}\right)$
(b) $\lim _{x \rightarrow \infty}\left(e^{-x}+\frac{2 \cos x}{x}\right)$
(d) $\lim _{x \rightarrow-\infty}\left(\frac{2 x^{2}}{\sqrt{4 x^{4}+1}}\right)$

