Problem 1

Express the given quantity as a single logarithm.
(a) $\ln (5)+5 \ln (3)$
(b) $\frac{1}{2} \ln (x+2)^{3}+\frac{1}{2}\left[\ln (x)-\ln \left(x^{2}+3 x+2\right)^{2}\right]$

Problem 2

Consider the following function. $f(x)=\ln (x-1)-1$
(a) What are the domain and range of f ?
(b) What is the y-intercept of the graph of f ?
(c) Sketch the graph of f.

Problem 3

Consider the following function. $f(x)=\cos x$
(a) Find the domain of f for whcih the function is invertible.
(b) Find $f^{-1}(x)$.
(c) Sketch the graph of $f^{-1}(x)$ for the appropriate domain.

Problem 4

If a rock is thrown upward on the planet Mars with a velocity of $10 \mathrm{~m} / \mathrm{s}$, its height in meters t seconds later is given by $y=10 t-1.86 t^{2}$. Estimate the instantaneous velocity of the particle when $\mathrm{t}=1$ using the following intervals.
(i) $[1,2]$
(iii) $[1,1.1]$
(v) $[1,1.001]$
(ii) $[1,1.5]$
(iv) $[1,1.01]$

Problem 5

(a) Explain what it means to say that
(i) $\lim _{x \rightarrow 3^{-}}=1$
(ii) $\lim _{x \rightarrow 3^{+}}=4$

You can explain using a graph.
(b) In this situation is it possible that $\lim _{x \rightarrow 1} f(x)$ exists? Explain. 1 of 2

Problem 6

For the function f whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
a) $\lim _{x \rightarrow 1} f(x)$
b) $\lim _{x \rightarrow 3^{-}} f(x)$
c) $\lim _{x \rightarrow 3^{+}} f(x)$
d) $\lim _{x \rightarrow 3} f(x)$
e) $f(3)$

Figure 1: Graph 1

Problem 7

Given $\lim _{x \rightarrow a} f(x)$, compute the limit by plugging in different values of x near a
a) $\lim _{x \rightarrow 0} \frac{\sin (\pi x)}{x}$
b) $\lim _{x \rightarrow 3} \ln \left(x^{2}-9\right)$
c) $\lim _{x \rightarrow 1}(1+x)^{\frac{1}{x}}$
d) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x)-1}{x-\frac{\pi}{2}}$

