MT110: Calculus and Analytic Geometry

Worksheet 14

Due 3:15 pm, Fri Dec 14

fall 2018

 Roll# Student 1:
 Roll# Evaluator 1:

 Roll# Student 2:
 Roll# Evaluator 2:

Problem 1 [80 Marks]

Solve each of the following integrals. Also specify the intervals of x on which the indefinite form of the integral is valid in each case. (Hint: What type of functions can be integrated according to the fundamental theorem of calculus?)

a)
$$\int (x^3 + 2x)\cos x \, dx \quad [8 \text{ Marks}]$$

f)
$$\int \csc^4 x \cot^6 x \, dx$$
 [8 Marks]

b)
$$\int \sin^3 t \cos^4 t \, dt$$
 [8 Marks]

g)
$$\int \cos(\pi x) \cos(4\pi x) dx$$
 [8 Marks]

c)
$$\int_0^{\pi} \sin^2 t \cos^5 t \, dt \quad [8 \text{ Marks}]$$

h)
$$\int_0^1 x^3 \sqrt{1-x^2} \, dx$$
 [8 Marks]

d)
$$\int_0^{\pi} \sin^2 t \cos^4 t \, dt \quad [8 \text{ Marks}]$$

i)
$$\int_0^1 \frac{t^5}{\sqrt{t^2 + 4}} dt$$
 [8 Marks]

e)
$$\int x \sec x \tan x \, dx$$
 [8 Marks]

j)
$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{1+\sin^2 t}} dt \quad [8 \text{ Marks}]$$

Problem 2

Turn of your PCs and place the chairs in their proper positions.