

MT110: Calculus & Analytic Geometry										
Course Code	MT110	Semester	1st							
Credit Hours	3	Term	Fall 2018							
Instructor	Usama Bin Sikandar	Pre-reqs	None							
Office	Room 9, 4th floor	E-mail	usama.sikandar@itu.edu.pk							
Department	Electrical Engineering	Discipline	Mathematics							
Teaching Assistants	Amna Gillani, Mohsin Ali	Office Hours	Thu 2:30-4:30 pm							

Course Description

The course starts off with basic geometry and algebra of single variable functions and then builds on the idea of derivative and integration from first principles. The students will be taught how to apply calculus to calculate rates of change in different real-world scenarios, velocities, areas under curves, and distances.

Course Outcomes/Objectives

By the end of the course, the students should be able to

- Understand the derivative as 'rate of change' computed as a limit of ratios, and the integral as a 'sum' computed as a limit of Riemann sums.
- Use both the limit definition and rules of differentiation to differentiate functions.
- Sketch the graph of a function using asymptotes, critical points, the derivative test for increasing/decreasing functions, and concavity.
- Apply differentiation to solve applied max/min problems and related rates problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Evaluate integrals using advanced techniques of integration, such as inverse substitution, partial fractions, and integration by parts.
- Use L'Hospital's rule to evaluate certain indefinite forms.

Books	
Textbook:	Single Variable Calculus: Early Transcendentals (7th ed.) by James Stewart.
Reference	<u>Calculus and Analytic Geometry (9th ed.) by George B. Thomas and Ross L. Finney</u>
Book:	

Course Assessment Distribution:					
Quizzes:	15 % (15 recitation worksheets)				
Assignments:	% (6 homework assignments)				
Midterm Exam:	25 %				
Final Exam:	40 % (cumulative final exam)				

Weekly Lecture Breakdown										
Week 1:	Introduction to Sets and Functions	Week 10:	Applications of Differentiation							
Week 2:	Elementary Functions	Week 11:	Applications of Differentiation							
Week 3:	Elementary Functions	Week 12:	Applications of Differentiation							
Week 4:	Limits	Week 13:	Antiderivatives							
Week 5:	Limits	Week 14:	Integration							
Week 6:	Limits	Week 15:	Techniques of Integration							
Week 7:	Derivatives	Week 16:	Techniques of Integration							
Week 8:	Differentiation Rules	Week 17:	Prep week							
Week 9:	Midterm exam	Week 18:	Final exam							

Chapter	Topics	Lectures						
	Fundamental problems in Calculus	5						
Stewart	• Velocity problem							
Ch 1	• Area and distance problem							
	• Functions							
	• What is a function?							
	 Four ways to represent a function 							
	 Sketching by hand 							
	 Transforming functions 							
	 Polynomials 							
	 Trigonometric functions 							
	• Inverse functions							
	 Exponential and Logarithmic functions 							
	• Limits	10						
Stewart	 Tangent and velocity problem 							
Ch 2	• Limit of a function							
	 Limits from left and right 							
	 Limit laws 							
	• Continuity							
	 Types of discontinuities 							
	 Intermediate values theorem 							
	 Precise definition (epsilon-delta) 							
	 Limits at infinity and infinite limits 							
	Derivatives							
	• Rates of change							
	 Derivative from first principles 							
	 Derivative as a function 							
	Midterm Exam							
	Differentiation Rules	4						
Stewart	 Derivatives of polynomials and exponential function 							
	 Product and quotient rules 							
Ch 3	 Derivatives of trigonometric functions 							
3.1 - 3.9	• The chain rule							
	• Implicit differentiation							
	 Derivatives of logarithmic functions 							

	Rates of change	
	• Natural science models	
	 Social science models 	
	 Exponential growth and decay 	
	 Related rates 	
	Applications of Differentiation	4
Stewart	 Stationary points 	
Ch 4	• The mean value theorem	
	 L'Hospital's rule 	
4.1-4.5	• Curve sketching	
47	 Optimization problems 	
1.7	 Antiderivatives 	
4.9		
	Integration	3
	• Area problem	
Stewart	• Reimann sums	
Ch 5	• Integration from Reimann sum	
65	• Midpoint rule	
0.5	• The definite integral	
	• The fundamental theorem of Calculus	
	 Indefinite integral and net change theorem 	
	• The substitution rule	
	• Average value of a function	
	Techniques of Integration	4
Character	\circ By parts	
Stewart	 Trigonometric integrals 	
Ch 7	• Trigonometric substitution	
7175	• Rational functions by partial fractions	
/.1-/.3	• General Strategy for integration	
7.8	• Improper integrals	
	Final Exam	

Cours	e Learning Objectives (CLOs):				
CLO	Description	BT	PLOs		
1	Sketch the graph of a function using asymptotes, critical points, the derivative test for increasing/decreasing functions, and concavity.	3	1, 2, 5, 9		
2	Use both the limit definition and rules of differentiation to differentiate functions.	3	1, 3, 9		
3	Evaluate integrals using advanced techniques of integration, such as inverse substitution, partial fractions and integration by parts.	3	1, 2, 9		
4	Apply integration to compute arc lengths, volumes of revolution and surface areas of revolution.	3	1, 3, 5, 9		

Mapping of CLOs to Assessment Modules:										
Assessments	CLO1	CLO2	CLO3	CLO4						
Worksheets	1	1	1	✓						
Assignments	1	1	1	✓						
MidTerm	1	1								
Final Exam	1	1	1	\checkmark						

Mapping of CLOs to Program Learning Outcomes (PLOs):									
PLOs/CLOS	CLO1	CLO2	CLO3	CLO4					
PLO 1 (Engineering Knowledge)	<i>√</i>	1	✓	1					
PLO 2 (Problem Analysis)	<i>√</i>		✓						
PLO 3 (Development of Solutions)		1		\checkmark					
PLO 4 (Investigation)									
PLO 5 (Modern tool usage)	<i>√</i>			✓ <i>✓</i>					
PLO 6 (The Engineer and Society)									
PLO 7 (Environment and Sustainability)									
PLO 8 (Ethics)									
PLO 9 (Individual and Team Work)	<i>√</i>	1	✓	✓					
PLO 10 (Communication)									
PLO 11 (Project Management)									
PLO 12 (Lifelong Learning)									

Grading Policy:													
Worksheet	To provide th	ne stud	lents v	vith an	oppor	tunity	to solv	ve prol	blems	under	guideo	ł	
Policy:	supervision,	studer	nts will	solve	one w	orkshe	et in e	ach of	the we	ekly r	ecitati	on sess	sions.
	Students will	work	in gro	ups of	two. T	hey ca	n only	seek h	elp fro	m the	textbo	ook, lec	ture
	notes and the	notes and the TAs. Each worksheet will constitute 1% of the grade. Out of 15 worksheets,											
	best 14 will b	pest 14 will be counted towards the final grade.											
Assignment	In order to d	In order to develop a comprehensive understanding of the subject and push the students											
Policy:	out of their c	omfor	t zone	in the	subjec	t, chal	lengin	g prol	olems	will be	e assig	ned as	
	homework. T	he stu	Idents	must c	lo the l	homev	work i	ndivid	lually.	Copyi	ng of h	nomew	ork or
	any kind of p	lagiari	ism is l	nighly	discou	raged	and vi	olation	s will	be dea	lt with	sever	ely by
	referring any	occur	rences	s to the	e discip	olinary	comm	ittee a	ind a st	traigh	t-away	y zero.	
	Homework s	ubmit	ted lat	e by o	ne day	will t	be pen	alized	by 20	%, bu	t after	that n	othing
	will be acce	pted. A	All hor	newor	'k assi	gnme	nts wi	ll cour	it towa	ards tl	he tota	al (no	.1
	best-of poli	cy). Th	e prob	lems i	n the a	ssignn	nent ar	e mea	nt to b	e chall	enging	g to rai	se the
	students' cal	students' caliber in the subject, give them confidence and enable them to prepare not just											
	the exams bu	it the r	eal wo	oria sce	enarios	S.			• •	1 1	11 1		1 .
Plagiarism:	The course h	as a ze	ero-tol	eranc	e poli	cy tow	ards p	lagiai	rism. V	vhile c	ollabo	ration	in this
	course is nig	niy en	Diagio	ea, you	i must	ensur	e that y	you do	not cla	aim ot	ner pe	opie s	WORK/
	images prog	own.	Plagia	risii 0	thore	vnen u	ne wor	d ag vo	eas, ass		s, theo	must of	gures,
	acknowlodge		ing coc	ies of c	matio	are pro		u as yc ignmoi	nte Fa	iling t	$\sim com $	alv wit	h tho
	nlagiarism	olicy w	vill logo	d to str	ict por	n ni yu Vəltiqe	includ	ing a f	nts. ra ailing	arado	in the	course	and
	referral to th		inlina	rv Cor	nmitte	for a	ntrict	action	u whicl	h may	nossih	ly load	to
	failing grad	failing grades in all the courses of the comestor											
Grading	Absolute gra	ding		course		e sem	0.00011						
didding		uing								1050			
	Grades	A+	A	A-	B+	В	B-	C+	С	C-	D+	D	F
	Cutoffs	>85	>75	>70	>65	>60	>55	>50	>45	>40	>35	>30	<30