$$
\text { Homework } 1 \text { Solution }
$$

Problem 1

Draw the following regions in Cartesian plane.
(a) $R=\{x, y:-7 \leq x<2$ and $-10<y<5\}$
(a) Let's draw the boundaries first: solid line $x=-7$, and dotted lines $x=2, y=-10$ and $y=5$. As $x<2, y>-10$ and $y<5$, shade the region inside the rectangle.

To verify whether the required shaded region is the one inside the boundaries and not outside, take a point inside the boundaries, let's say (0,0). Because $-7 \leq 0<2$ and $-10<0<5$, we have shaded the correct region.
(b) $R=\left\{x, y: 2 x^{2}+2 y^{2}<32\right\}$

Let's consider the boundary first.

$$
\begin{gathered}
2 x^{2}+2 y^{2}=32 \\
x^{2}+y^{2}=16
\end{gathered}
$$

is an equation of the circle of radius 4. Draw the circle and shade the region inside the circle because the required region is $x^{2}+y^{2}<16$.

To verify, consider a point in our shaded region let's say $(1,1)$. Then $1^{2}+1^{2}=2<16$. So, required shaded region is inside the circle.

Problem 2

Find an expression for the function whose graph is the given curve.

The function can be divided into three pieces and their corresponding intervals in its domain are $-8 \leq x<-4,-4 \leq x \leq 4$, and $4<x \leq 8$
(a) Piece 1: Straight line passes through two points $\mathrm{A}(-8,6)$ and $\mathrm{B}(-4,0)$. Using $y=m x+c$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-6}{-4-(-8)}=-\frac{3}{2} \\
c=y-m x=0-\left(-\frac{3}{2}\right)(-4)=-6 \\
y=-\frac{3}{2} x-6 \quad \text { for } \quad-8 \leq x<-4 \\
2 \text { of } 15
\end{gathered}
$$

(b) Piece 2: is the upper $(y>0)$ semi-circle of radius 4 .

$$
\begin{gathered}
y^{2}+x^{2}=4^{2} \\
y=\sqrt{16-x^{2}} \quad \text { for } \quad-4 \leq x \leq 4
\end{gathered}
$$

(c) Piece 3: Straight line passes through two points $\mathrm{C}(4,0)$ and $\mathrm{D}(8,6)$.

$$
\begin{gathered}
m=\frac{3}{2} \\
c=-6 \\
y=\frac{3}{2} x-6 \quad \text { for } \quad 4<x \leq 8
\end{gathered}
$$

Problem 3

The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the market, then the number of spaces y he can rent is given by the equation $y=250-3 x$.
(a) Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented cannot be negative quantities.)

(b) What do the slope, the x-intercept, and the y-intercept of the graph represent in the actual scenario?

It is important to note than x, the rent of a space, in the independent variables and y, number of rental spaces, is the dependent variable.
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. It represents the ratio of change in number of spaces to the change in the rent of a space. A slope of -3 represent that if the charges of rental space in the market increase by $\$ 1$, the number of spaces the manager can rent decrease by 3 . It also means that if the charges of rental space in the market decrease by $\$ 1$, the number of spaces the manager can rent increase by 3.
x-intercept $(x=83.33, y=0)$: If he charges $\$ 83.33$ for a space, there will be no spaces in the market that he can rent.
y-intercept ($x=0, y=250$): If he gives away the spaces for free, there will be a total of 250 spaces that he can give away.

Problem 4

Match each equation with its graph. Explain your choices.

(a) $y=3 x$ is G
(c) $y=x^{3}$ is F
(b) $y=3^{x}$ is f
(d) $y=\sqrt[3]{x}$ is g

Problem 5

Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions and then applying the appropriate transformations.
(a) $y=\frac{1}{x+2}$

(b) $y=(x-1)^{3}$

$f(x)=x^{3}$
(c) $y=-\sqrt[3]{x}$

$f(x)=\sqrt[3]{x}$

$f(x)=-\sqrt[3]{x}$
(d) $y=x^{2}+6 x+4$

$$
\begin{gathered}
y=x^{2}+6 x+4=x^{2}+6 x+9-9+4 \\
\Longrightarrow y=(x+3)^{2}-5
\end{gathered}
$$

$f(x)=x^{2}$

$f(x)=(x+3)^{2}$

$f(x)=(x+3)^{2}-5$
(e) $y=\sqrt{x-2}-1$

$y=\sqrt{x-2}$

(f) $y=4 \sin 3 x$

(g) $y=\sin \left(\frac{1}{2} x\right)$

$y=\sin x$

(h) $y=\frac{2}{x}-2$

$y=\frac{1}{x}$

$y=\frac{2}{x}$

$y=\frac{2}{x}-2$
(i) $y=\frac{1}{2}(1-\cos x)$

$y=\cos x$
$y=-\cos x$

$y=-\cos x+1$

$y=\frac{1}{2}(1-\cos x)$
(j) $y=1-2 \sqrt{x+3}$

$y=\sqrt{x}$
$y=\sqrt{x+3}$

$y=-2 \sqrt{x+3}$

$y=1-2 \sqrt{x+3}$
(k) $y=1-2 x-x^{2}$

(l) $y=|x|-2$

(m) $y=|x-2|$

$y=|x|$

$y=|x-2|$
(n) $y=\frac{1}{4} \tan \left(x-\frac{\pi}{4}\right)$

$y=\tan x$

$y=\tan \left(x-\frac{\pi}{4}\right)$

(a) $y=\frac{1}{4} \tan \left(x-\frac{\pi}{4}\right)$

Problem 6

Given $f(x)=\sqrt{3-x}$ and $g(x)=\sqrt{x^{2}-1}$. Find the following combinations of functions and state the domain in each case.
(a) $f+g$
(b) $f-g$
(c) $f g$
(d) f / g

$$
D_{f}=(-\infty, 3] \text { and } D_{g}=(-\infty,-1] \cup[1, \infty)
$$

Domain of

$$
\begin{aligned}
& f(x)=\sqrt{3-x} \quad(-\infty, 3] \\
& \text { number line. }
\end{aligned}
$$

Domain of
$g(x)=\sqrt{x^{2}-1} \quad(-\infty,-1] \cup[1, \infty)$

(a) $(f+g)(x)=\sqrt{3-x}+\sqrt{x^{2}-1}$

$$
D_{f+g}=D_{f} \cap D_{g}=(-\infty,-1] \cup[1,3]
$$

(b) $(f-g)(x)=\sqrt{3-x}-\sqrt{x^{2}-1}$

$$
D_{f-g}=D_{f} \cap D_{g}=(-\infty,-1] \cup[1,3]
$$

(c) $(f g)(x)=\sqrt{(3-x)\left(x^{2}-1\right)}$

$$
D_{f g}=D_{f} \cap D_{g}=(-\infty,-1] \cup[1,3]
$$

(d) $(f / g)(x)=\sqrt{\frac{3-x}{x^{2}-1}}$

$$
D_{f / g}=\left(D_{f} \cap D_{g}\right) \backslash\{ \pm 1\}=(-\infty,-1) \cup(1,3]
$$

Problem 7

Let $f(x)=x+\frac{1}{x}$ and $g(x)=\frac{x+1}{x+2}$, find the following composite functions and their domains.
(a) $f \circ g$
(c) $f \circ f$
(b) $g \circ f$
(d) $g \circ g$

The domain of $f, D_{f}=(-\infty, 0) \cup(0, \infty)$. We can verify this by finding the domains and ranges of x and $\frac{1}{x}$ separately and taking their intersection, using the same method as done in Problem 6.
The range of $f, E_{f}=(-\infty, 0) \cup(0, \infty)$, which is equal to the domain of f^{-1}.
Similarly $D_{g}=(-\infty,-2) \cup(-2, \infty)$ and $E_{g}=\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$.
(a) $f \circ g=f(g(x))=f\left(\frac{x+1}{x+2}\right)=\frac{x+1}{x+2}+\frac{1}{\frac{x+1}{x+2}}=\frac{x+1}{x+2}+\frac{x+2}{x+1} \Longrightarrow x \neq-2$ and $x \neq-1$
$\Longrightarrow D_{f \circ g}=(-\infty,-2) \cup(-2,-1) \cup(-1, \infty)$.
This domain can also be found using the method found in the following figure.

(b) $g \circ f=g(f(x))=g\left(x+\frac{1}{x}\right)=\frac{x+\frac{1}{x}+1}{x+\frac{1}{x}+2}=\frac{\frac{x^{2}+1+x}{x}}{\frac{x^{2}+1+2 x}{x}}=\frac{x\left(x^{2}+x+1\right)}{x\left(x^{2}+2 x+1\right)}=\frac{x\left(x^{2}+x+1\right)}{x(x+1)^{2}}$
$\Longrightarrow x \neq 0$ and $x \neq-1$. Notice that we cannot cancel x in the numerator and the denominator because $x=0$ is allowed in the domain of g. If we cancel, we will also miss the condition that $x \neq 0$. Because $x=0$ is not in the domain of f and hence it cannot be in the domain of $g \circ f$ either.
$\Longrightarrow D_{g \circ f}=(-\infty,-1) \cup(-1,0) \cup(0, \infty)$.
(c) $f \circ f=f(f(x)) x=f\left(x+\frac{1}{x}\right)=x+\frac{1}{x}+\frac{1}{x+\frac{1}{x}}=x+\frac{1}{x}+\frac{x}{x^{2}+1}=\frac{x^{4}+3 x^{2}+1}{x\left(x^{2}+1\right)}$
$\Longrightarrow x \neq 0$
$\Longrightarrow D_{f \circ f}=(-\infty, 0) \cup(0, \infty)$.
(d) $g \circ g=g(g(x))=g\left(\frac{x+1}{x+2}\right)=\frac{\frac{x+1}{x+2}+1}{\frac{x+1}{x+2}+2}=\frac{\frac{2 x+3}{x+2}}{\frac{3 x+5}{x+2}}=\frac{(2 x+3)(x+2)}{(3 x+5)(x+2)}$
$\Longrightarrow x \neq-\frac{5}{3}$ and $x \neq-2$.
$\Longrightarrow D_{g \circ g}=(-\infty,-2) \cup\left(-2,-\frac{5}{3}\right) \cup\left(-\frac{5}{3}, \infty\right)$.

Problem 8

(a) Suppose f is a one-to-one function with domain D and range E . How is the inverse function f^{-1} defined? What is the domain of f^{-1} ? What is the range of f^{-1} ?

Suppose f is a function that takes every element $x \in \mathrm{D}$ and returns the elements $y \in \mathrm{E}$. Its inverse f^{-1} is a function that takes every element y in the range E of f and returns the corresponding elements x in the domain D of f. Therefore the domain of f^{-1} is E and the range of f^{-1} is D .
(b) If you are given a formula for f, how do you find a formula for f^{-1} ?

Steps to find formula of f^{-1} :
(1) Write $f(x)=y$
(2) Solve this equation for x in terms of y (if possible).
(3) To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y=f^{-1}(x)$.
(c) If you are given the graph of f, how do you find the graph of f^{-1} ?

If graph of $f(x)$ is given then graph of f^{-1} is obtained by reflecting the graph of f in the line $y=x$.

Problem 9

Let $f(x)=\sqrt{1-x^{2}}, 0 \leq x \leq 1$.
(a) Find $f^{-1}(x)$. How is it related to $f(x)$?

Step 1: Solve this equation for x in terms of y (if possible).

$$
\begin{aligned}
& y=\sqrt{1-x^{2}} \\
& y^{2}=1-x^{2} \\
& x^{2}=1-y^{2} \\
& x=\sqrt{1-y^{2}}
\end{aligned}
$$

We chose postive square root because we know that $0 \leq x \leq 1$.
Step 2: Interchange x and y.

$$
y=\sqrt{1-x^{2}}
$$

Step 3: $f^{-1}(x)=\sqrt{1-x^{2}}$
The result shows that $f^{-1}(x)=f(x)$ because
(1) They have the same expressions.
(2) Their respective domain and range are identical.
(b) Sketch the graph of f and explain your answer to part (a).

Because $f(x)=f^{-1}(x)$, it can be seen from the graph that the function is symmetric across the line $y=x$.

Problem 10

We know that domain of function $f(x)=x^{2}$ is all real numbers because we can square all real numbers. Why is it true that its range consists of all positive real numbers, without leaving out any numbers in between? [Hint: Use the concept of an inverse function]

Coming soon ... wait for it ... it's going to be very pretty.

Problem 11

For each of the following functions,
(a) $f(x)=\frac{4 x-1}{2 x+3}$
(b) $f(x)=\ln (x+3)$
(i) Find its domain and range
(ii) Find a formula for the inverse of the function and find its domain and range.
(a) (i) $f(x)=\frac{4 x-1}{2 x+3}$
$D_{f}=\left(-\infty,-\frac{3}{2}\right) \cup\left(-\frac{3}{2}, \infty\right)$.
To find the range E_{f}, let's find the inverse function first. Because the domain of f^{-1} will be the range of f.
(ii)

$$
\begin{gathered}
\text { Let } y=\frac{4 x-1}{2 x+3} \\
(2 x+3) y=4 x-1 \\
2 x y+3 y=4 x-1 \\
3 y+1=x(4-2 y) \\
x=\frac{3 y+1}{4-2 y} \\
\Longrightarrow f^{-1}(x)=\frac{3 x+1}{2(2-x)} \\
D_{f-1}=(-\infty, 2) \cup(2, \infty)=E_{f} \\
E_{f^{-1}}=D_{f}=\left(-\infty,-\frac{3}{2}\right) \cup\left(-\frac{3}{2}, \infty\right)
\end{gathered}
$$

(b) (i) $f(x)=\ln (x+3)$
$D_{f}=(-3, \infty)$
To find the range E_{f}, let's find the inverse function first. Because the domain of f^{-1} will be the range of f.
(ii)

$$
\begin{gathered}
\text { Let } y=\ln (x+3) \\
\ln (x+3)=y
\end{gathered}
$$

Using the definition of log function,

$$
\begin{gathered}
x+3=e^{y} \\
x=e^{y}-3 \\
\Longrightarrow f^{-1}(x)=e^{x}-3 \\
D_{f^{-1}}=(-\infty, \infty)=E_{f} \\
E_{f^{-1}}=D_{f}=(-3, \infty)
\end{gathered}
$$

