Homework 1 Solution

Problem 1

Draw the following regions in Cartesian plane.

(a) $R = \{x, y : -7 \le x < 2 \text{ and } -10 < y < 5\}$

(a) Let's draw the boundaries first: solid line x = -7, and dotted lines x = 2, y = -10 and y = 5. As x < 2, y > -10 and y < 5, shade the region inside the rectangle.

To verify whether the required shaded region is the one inside the boundaries and not outside, take a point inside the boundaries, let's say (0,0). Because $-7 \le 0 < 2$ and -10 < 0 < 5, we have shaded the correct region.

(b) $R = \{x, y : 2x^2 + 2y^2 < 32\}$

Let's consider the boundary first.

$$2x^2 + 2y^2 = 32$$
$$x^2 + y^2 = 16$$

is an equation of the circle of radius 4. Draw the circle and shade the region inside the circle because the required region is $x^2 + y^2 < 16$.

To verify, consider a point in our shaded region let's say (1, 1). Then $1^2 + 1^2 = 2 < 16$. So, required shaded region is inside the circle.

Problem 2

Find an expression for the function whose graph is the given curve.

The function can be divided into three pieces and their corresponding intervals in its domain are $-8 \le x < -4, -4 \le x \le 4$, and $4 < x \le 8$

(a) Piece 1: Straight line passes through two points A(-8,6) and B(-4,0). Using y = mx + c

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 6}{-4 - (-8)} = -\frac{3}{2}$$
$$c = y - mx = 0 - \left(-\frac{3}{2}\right)(-4) = -6$$
$$y = -\frac{3}{2}x - 6 \quad \text{for} \quad -8 \le x < -4$$
$$2 \text{ of } 15$$

(b) Piece 2: is the upper (y > 0) semi-circle of radius 4.

$$y^{2} + x^{2} = 4^{2}$$

 $y = \sqrt{16 - x^{2}}$ for $-4 \le x \le 4$

(c) Piece 3: Straight line passes through two points C(4,0) and D(8,6).

$$m = \frac{3}{2}$$

$$c = -6$$

$$y = \frac{3}{2}x - 6 \quad \text{for} \quad 4 < x \le 8$$

Problem 3

The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the market, then the number of spaces y he can rent is given by the equation y = 250-3x.

(a) Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented cannot be negative quantities.)

(b) What do the slope, the x-intercept, and the y-intercept of the graph represent in the actual scenario? It is important to note than x, the rent of a space, in the independent variables and y, number of rental spaces, is the dependent variable.

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$. It represents the ratio of change in number of spaces to the change in the rent of a space. A slope of -3 represent that if the charges of rental space in the market increase by \$1, the number of spaces the manager can rent decrease by 3. It also means that if the charges of rental space in the market decrease by \$1, the number of spaces the manager can rent increase by 3.

x-intercept (x = 83.33, y = 0): If he charges \$83.33 for a space, there will be no spaces in the market that he can rent.

y-intercept (x = 0, y = 250): If he gives away the spaces for free, there will be a total of 250 spaces that he can give away.

Match each equation with its graph. Explain your choices.

Problem 5

Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions and then applying the appropriate transformations.

(b)
$$y = (x - 1)^3$$

(c) $y = -\sqrt[3]{x}$

(d) $y = x^2 + 6x + 4$

(e)
$$y = \sqrt{x-2} - 1$$

(f) $y = 4\sin 3x$

(g)
$$y = \sin\left(\frac{1}{2}x\right)$$

(i)
$$y = \frac{1}{2}(1 - \cos x)$$

(j) $y = 1 - 2\sqrt{x+3}$

(k)
$$y = 1 - 2x - x^2$$

(l) y = |x| - 2

(m) y = |x - 2|

(n)
$$y = \frac{1}{4} \tan \left(x - \frac{\pi}{4} \right)$$

Given $f(x) = \sqrt{3-x}$ and $g(x) = \sqrt{x^2-1}$. Find the following combinations of functions and state the domain in each case.

(a) f+g (b) f-g (c) fg (d) f/g

 $D_f = (-\infty, 3]$ and $D_g = (-\infty, -1] \cup [1, \infty)$

Domain of $f(x) = \sqrt{3-x}$ Number line: $(-\infty, 3]$

(a)
$$(f+g)(x) = \sqrt{3-x} + \sqrt{x^2-1}$$

 $D_{f+g} = D_f \cap D_g = (-\infty, -1] \cup [1,3]$
(b) $(f-g)(x) = \sqrt{3-x} - \sqrt{x^2-1}$
 $D_{f-g} = D_f \cap D_g = (-\infty, -1] \cup [1,3]$
(c) $(fg)(x) = \sqrt{(3-x)(x^2-1)}$
 $D_{fg} = D_f \cap D_g = (-\infty, -1] \cup [1,3]$
(d) $(f/g)(x) = \sqrt{\frac{3-x}{x^2-1}}$
 $D_{f/g} = (D_f \cap D_g) \setminus \{\pm 1\} = (-\infty, -1) \cup (1,3]$

Let $f(x) = x + \frac{1}{x}$ and $g(x) = \frac{x+1}{x+2}$, find the following composite functions and their domains.

- (a) $f \circ g$ (c) $f \circ f$
- (b) $g \circ f$ (d) $g \circ g$

The domain of f, $D_f = (-\infty, 0) \cup (0, \infty)$. We can verify this by finding the domains and ranges of x and $\frac{1}{x}$ separately and taking their intersection, using the same method as done in Problem 6.

The range of $f, E_f = (-\infty, 0) \cup (0, \infty)$, which is equal to the domain of f^{-1} . Similarly $D_g = (-\infty, -2) \cup (-2, \infty)$ and $E_g = (-\infty, \frac{1}{2}) \cup (\frac{1}{2}, \infty)$.

(a)
$$f \circ g = f(g(x)) = f\left(\frac{x+1}{x+2}\right) = \frac{x+1}{x+2} + \frac{1}{\frac{x+1}{x+2}} = \frac{x+1}{x+2} + \frac{x+2}{x+1} \implies x \neq -2 \text{ and } x \neq -1$$

$$\implies D_{f \circ g} = (-\infty, -2) \cup (-2, -1) \cup (-1, \infty).$$

This domain can also be found using the method found in the following figure.

mapped back into Dg

(b)
$$g \circ f = g(f(x)) = g\left(x + \frac{1}{x}\right) = \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} + 2} = \frac{\frac{x^2 + 1 + x}{x}}{\frac{x^2 + 1 + 2x}{x}} = \frac{x(x^2 + x + 1)}{x(x^2 + 2x + 1)} = \frac{x(x^2 + x + 1)}{x(x + 1)^2}$$

 $\implies x \neq 0$ and $x \neq -1$. Notice that we cannot cancel x in the numerator and the denominator because x = 0 is allowed in the domain of g. If we cancel, we will also miss the condition that $x \neq 0$. Because x = 0 is not in the domain of f and hence it cannot be in the domain of $g \circ f$ either.

$$\implies D_{g \circ f} = (-\infty, -1) \cup (-1, 0) \cup (0, \infty)$$

(c)
$$f \circ f = f(f(x))x = f\left(x + \frac{1}{x}\right) = x + \frac{1}{x} + \frac{1}{x + \frac{1}{x}} = x + \frac{1}{x} + \frac{x}{x^2 + 1} = \frac{x^4 + 3x^2 + 1}{x(x^2 + 1)}$$

 $\implies x \neq 0$

$$\implies D_{f \circ f} = (-\infty, 0) \cup (0, \infty).$$

(d)
$$g \circ g = g(g(x)) = g\left(\frac{x+1}{x+2}\right) = \frac{\frac{x+1}{x+2}+1}{\frac{x+1}{x+2}+2} = \frac{\frac{2x+3}{x+2}}{\frac{3x+5}{x+2}} = \frac{(2x+3)(x+2)}{(3x+5)(x+2)}$$

 $\implies x \neq -\frac{5}{3} \text{ and } x \neq -2.$
 $\implies D_{g \circ g} = (-\infty, -2) \cup \left(-2, -\frac{5}{3}\right) \cup \left(-\frac{5}{3}, \infty\right).$

(a) Suppose f is a one-to-one function with domain D and range E. How is the inverse function f^{-1} defined? What is the domain of f^{-1} ? What is the range of f^{-1} ?

Suppose f is a function that takes every element $x \in D$ and returns the elements $y \in E$. Its inverse f^{-1} is a function that takes every element y in the range E of f and returns the corresponding elements x in the domain D of f. Therefore the domain of f^{-1} is E and the range of f^{-1} is D.

(b) If you are given a formula for f, how do you find a formula for f^{-1} ? Steps to find formula of f^{-1} :

- (1) Write f(x) = y
- (2) Solve this equation for x in terms of y (if possible).
- (3) To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y = f^{-1}(x)$.
- (c) If you are given the graph of f, how do you find the graph of f⁻¹?
 If graph of f(x) is given then graph of f⁻¹ is obtained by reflecting the graph of f in the line y = x.

Problem 9

Let $f(x) = \sqrt{1 - x^2}, 0 \le x \le 1$.

(a) Find $f^{-1}(x)$. How is it related to f(x)?

Step 1: Solve this equation for x in terms of y (if possible).

$$y = \sqrt{1 - x^2}$$
$$y^2 = 1 - x^2$$
$$x^2 = 1 - y^2$$
$$x = \sqrt{1 - y^2}$$

We chose postive square root because we know that $0 \le x \le 1$.

Step 2: Interchange x and y.

$$y = \sqrt{1 - x^2}$$

Step 3: $f^{-1}(x) = \sqrt{1 - x^2}$

The result shows that $f^{-1}(x) = f(x)$ because

- (1) They have the same expressions.
- (2) Their respective domain and range are identical.

(b) Sketch the graph of f and explain your answer to part (a).

Because $f(x) = f^{-1}(x)$, it can be seen from the graph that the function is symmetric across the line y = x.

Problem 10

We know that domain of function $f(x) = x^2$ is all real numbers because we can square all real numbers. Why is it true that its range consists of all positive real numbers, without leaving out any numbers in between? [Hint: Use the concept of an inverse function]

Coming soon ... wait for it ... it's going to be very pretty.

For each of the following functions,

(a)
$$f(x) = \frac{4x - 1}{2x + 3}$$
 (b) $f(x) = \ln(x + 3)$

- (i) Find its domain and range
- (ii) Find a formula for the inverse of the function and find its domain and range.
- (a) (i) $f(x) = \frac{4x-1}{2x+3}$ $D_f = (-\infty, -\frac{3}{2}) \cup (-\frac{3}{2}, \infty).$ To find the range E_f , let's find the inverse function first. Because the domain of f^{-1} will be the range of f.
 - (ii)

Let
$$y = \frac{4x - 1}{2x + 3}$$

 $(2x + 3)y = 4x - 1$
 $2xy + 3y = 4x - 1$
 $3y + 1 = x(4 - 2y)$
 $x = \frac{3y + 1}{4 - 2y}$
 $\implies f^{-1}(x) = \frac{3x + 1}{2(2 - x)}$
 $D_{f^{-1}} = (-\infty, 2) \cup (2, \infty) = E_f$
 $E_{f^{-1}} = D_f = \left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$

(b) (i) $f(x) = \ln(x+3)$ $D_f = (-3, \infty)$

•

To find the range E_f , let's find the inverse function first. Because the domain of f^{-1} will be the range of f.

(ii)

Let $y = \ln(x+3)$ $\ln(x+3) = y$

Using the definition of log function,

$$x + 3 = e^{y}$$

$$x = e^{y} - 3$$

$$\implies f^{-1}(x) = e^{x} - 3$$

$$D_{f^{-1}} = (-\infty, \infty) = E_{f}$$

$$E_{f^{-1}} = D_{f} = (-3, \infty)$$