Homework 2

Due: Fri, Oct 12, 2:00 pm

Tips to avoid any cases of plagiarism

- Do not look at the solutions of your classmates.
- Your are encouraged to discuss the homework with your classmates, but restrict yourself to oral discussions only.
- Cite all the online sources that you get help from.
- Keep your work in a secure place.

Problem 1

(a) Let $f(x) = \frac{x-1}{\sqrt{x-1}}$

- (i) Evaluate f(1.5), f(1.1), f(1.01) and f(1.001) and guess the value for $\lim_{x \to 1^+} f(x)$.
- (ii) Evaluate f(0.5), f(0.9), f(0.99) and f(0.999) and guess the value for $\lim_{x \to 1^{-}} f(x)$.
- (iii) Do you think $\lim_{x \to 1} f(x)$ exists?
- (b) Let $f(x) = \frac{x+1}{x^2-1}$
 - (i) Evaluate f(-1.5), f(-1.1), f(-1.01) and f(-1.001) and guess the value for $\lim_{x \to -1^{-}} f(x)$.
 - (ii) Evaluate f(-0.5), f(-0.9), f(-0.99) and f(-0.999) and guess the value for $\lim_{x \to -1^+} f(x)$.
 - (iii) Do you think $\lim_{x \to -1} f(x)$ exists?

Problem 2

Sketch a possible graph of each of the following functions with the given properties.

- (a) f(-1) = 2, f(0) = -1, f(1) = 3 and $\lim_{x \to 1} f(x)$ does not exist.
- (b) f(x) = 1 for $-2 \le x \le 1$, $\lim_{x \to 1^+} f(x) = 3$ and $\lim_{x \to -2} f(x) = 1$.
- (c) f(0) = 1, $\lim_{x \to 0^{-}} f(x) = 2$ and $\lim_{x \to 0^{+}} f(x) = 3$.
- (d) $\lim_{x \to 0} f(x) = -2$, f(0) = 1, f(2) = 3 and $\lim_{x \to 2} f(x)$ does not exist.

Problem 3

- (a) Numerically estimate $\lim_{x\to 0^+} x^{\sec x}$
- (b) Explain what is wrong with the following logic:

Since 0 to any power is 0, $\lim_{x \to 0} x^{\sec x} = \lim_{x \to 0} 0^{\sec x} = 0.$ 1 of 2

Problem 4

- (a) Give a possible expression of a function f(x) such that $\lim_{x\to 0} f(x)$ exists but f(0) does not exist.
- (b) Give a possible expression of a function g(x) such that g(0) exists but $\lim_{x \to 0} g(x)$ does not exist.
- (c) Give a possible expression of a function f(x) such that f(0) exists and $\lim_{x \to 0} f(x)$ exists but $\lim_{x \to 0} f(x) \neq f(0)$.

Problem 5

Find the exact value of the following limits. State clearly any limit rules or theorems that you use.

(a)	$ \lim_{x \to 2} \frac{x+2}{x^2 + 5x + 6} $		(f)	$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4}$
(b)	$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$	[Hint: Rationalize]	(g)	$\lim_{x \to \pi} x \sin x$
			(h)	$\lim_{x \to 0} \frac{\tan x}{\sin x}$
	•		(i)	$\lim_{x \to 2} \sqrt{x^2 - 2x + 2}$
(d)	$\lim_{x \to 1} \frac{x^2 - 1}{x + 2}$		(j)	$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$
(e)	$ \lim_{x \to -1} \frac{x^2 + x}{x^2 - x - 2} $		(k)	$\lim_{x \to 0} x^4 \cos\left(\frac{2}{x}\right)$

Problem 6

- (a) Write each answer as an equality, and any decimals up to 7 decimal places (e.g. 2 < x < 2.0164389). Clearly state the value of ϵ and δ (or M or N and δ) in each case.
 - (i) How close to 4 do we need to take x so that $\left(\frac{x}{2}-2\right) < 0.001$?
 - (ii) How close to 4 do we need to take x so that $\left(\frac{x}{2}-2\right) > -0.0001$?
 - (iii) How close to 0 do we need to take x so that (2x + 9) < 9.0001?
 - (iv) How close to 0 do we need to take x so that (2x + 9) > 8.999?
 - (v) How close to 0 do we need to take x so that $(x^2 + 6x + 9) < 9.001$?
 - (vi) How close to 0 do we need to take x so that $(x^2 + 6x + 9) < 9.0001$?
 - (vii) How close to 0 do we need to take x so that $(x^2 + 6x + 9) > 8.9999?$

(viii) How close to -7 do we need to take x so that $\frac{1}{(x+7)^4} > 10000$?

- (ix) How close to -7 do we need to take x so that $\frac{1}{(x+7)^4} > 100000$?
- (x) How close to 0 do we need to take x so that $\ln x < -10000$?
- (xi) How close to 0 do we need to take x so that $\ln x < -100000$?

(b) Use the ϵ - δ definition of a limit to show that

(i)
$$\lim_{x \to 4} \left(\frac{x}{2} - 2\right) = 0$$

(ii) $\lim_{x \to 0} (2x + 9) = 9$
(iii) $\lim_{x \to 0} (x^2 + 6x + 9) = 9$
(v) $\lim_{x \to 0^+} \ln x = -\infty$