# Homework 2 

Due: Fri, Oct 12, 2:00 pm
Fall 2018

## Tips to avoid any cases of plagiarism

- Do not look at the solutions of your classmates.
- Your are encouraged to discuss the homework with your classmates, but restrict yourself to oral discussions only.
- Cite all the online sources that you get help from.
- Keep your work in a secure place.


## Problem 1

(a) Let $f(x)=\frac{x-1}{\sqrt{x}-1}$
(i) Evaluate $f(1.5), f(1.1), f(1.01)$ and $f(1.001)$ and guess the value for $\lim _{x \rightarrow 1^{+}} f(x)$.
(ii) Evaluate $f(0.5), f(0.9), f(0.99)$ and $f(0.999)$ and guess the value for $\lim _{x \rightarrow 1^{-}} f(x)$.
(iii) Do you think $\lim _{x \rightarrow 1} f(x)$ exists?
(b) Let $f(x)=\frac{x+1}{x^{2}-1}$
(i) Evaluate $f(-1.5), f(-1.1), f(-1.01)$ and $f(-1.001)$ and guess the value for $\lim _{x \rightarrow-1^{-}} f(x)$.
(ii) Evaluate $f(-0.5), f(-0.9), f(-0.99)$ and $f(-0.999)$ and guess the value for $\lim _{x \rightarrow-1^{+}} f(x)$.
(iii) Do you think $\lim _{x \rightarrow-1} f(x)$ exists?

## Problem 2

Sketch a possible graph of each of the following functions with the given properties.
(a) $f(-1)=2, f(0)=-1, f(1)=3$ and $\lim _{x \rightarrow 1} f(x)$ does not exist.
(b) $f(x)=1$ for $-2 \leq x \leq 1, \lim _{x \rightarrow 1^{+}} f(x)=3$ and $\lim _{x \rightarrow-2} f(x)=1$.
(c) $f(0)=1, \lim _{x \rightarrow 0^{-}} f(x)=2$ and $\lim _{x \rightarrow 0^{+}} f(x)=3$.
(d) $\lim _{x \rightarrow 0} f(x)=-2, f(0)=1, f(2)=3$ and $\lim _{x \rightarrow 2} f(x)$ does not exist.

## Problem 3

(a) Numerically estimate $\lim _{x \rightarrow 0^{+}} x^{\sec x}$
(b) Explain what is wrong with the following logic:

Since 0 to any power is $0, \lim _{x \rightarrow 0} x^{\sec x}=\lim _{x \rightarrow 0} 0^{\sec x}=0$.

## Problem 4

(a) Give a possible expression of a function $f(x)$ such that $\lim _{x \rightarrow 0} f(x)$ exists but $f(0)$ does not exist.
(b) Give a possible expression of a function $g(x)$ such that $g(0)$ exists but $\lim _{x \rightarrow 0} g(x)$ does not exist.
(c) Give a possible expression of a function $f(x)$ such that $f(0)$ exists and $\lim _{x \rightarrow 0} f(x)$ exists but $\lim _{x \rightarrow 0} f(x) \neq f(0)$.

## Problem 5

Find the exact value of the following limits. State clearly any limit rules or theorems that you use.
(a) $\lim _{x \rightarrow 2} \frac{x+2}{x^{2}+5 x+6}$
(f) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}-4}$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}$
(g) $\lim _{x \rightarrow \pi} x \sin x$
(c) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+3}-2} \quad$ [Hint: Rationalize]
(h) $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x+2}$
(i) $\lim _{x \rightarrow 2} \sqrt{x^{2}-2 x+2}$
(j) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(e) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{x^{2}-x-2}$
(k) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)$

## Problem 6

(a) Write each answer as an equality, and any decimals up to 7 decimal places (e.g. $2<x<2.0164389$ ). Clearly state the value of $\epsilon$ and $\delta$ (or $M$ or $N$ and $\delta$ ) in each case.
(i) How close to 4 do we need to take $x$ so that $\left(\frac{x}{2}-2\right)<0.001$ ?
(ii) How close to 4 do we need to take $x$ so that $\left(\frac{x}{2}-2\right)>-0.0001$ ?
(iii) How close to 0 do we need to take $x$ so that $(2 x+9)<9.0001$ ?
(iv) How close to 0 do we need to take $x$ so that $(2 x+9)>8.999$ ?
(v) How close to 0 do we need to take $x$ so that $\left(x^{2}+6 x+9\right)<9.001$ ?
(vi) How close to 0 do we need to take $x$ so that $\left(x^{2}+6 x+9\right)<9.0001$ ?
(vii) How close to 0 do we need to take $x$ so that $\left(x^{2}+6 x+9\right)>8.9999$ ?
(viii) How close to -7 do we need to take $x$ so that $\frac{1}{(x+7)^{4}}>10000$ ?
(ix) How close to -7 do we need to take $x$ so that $\frac{1}{(x+7)^{4}}>100000$ ?
(x) How close to 0 do we need to take $x$ so that $\ln x<-10000$ ?
(xi) How close to 0 do we need to take $x$ so that $\ln x<-100000$ ?
(b) Use the $\epsilon-\delta$ definition of a limit to show that
(i) $\lim _{x \rightarrow 4}\left(\frac{x}{2}-2\right)=0$
(iv) $\lim _{x \rightarrow-7} \frac{1}{(x+7)^{4}}=\infty$
(ii) $\lim _{x \rightarrow 0}(2 x+9)=9$
(iii) $\lim _{x \rightarrow 0}\left(x^{2}+6 x+9\right)=9$
(v) $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$

