

EE361: Control Systems									
Course CodeEE361Semester6th									
Credit Hours	3+1 Term Spring 2019								
Instructor	Electrical Network Analysis								
Office	ce Room 9, 4th floor E-mail		usama.sikandar@itu.edu.pk						
Department	Electrical Engineering	Discipline	Engineering						
Teaching AssistantKhansa RasheedOffice HoursFri 12-1 pm									
Lab Engineers	Abdullah Baig, Asif Ali	Lab Timings	Fri 2-5 pm						

Course Description

This course teaches the students how to control the behavior of a physical system, which can be modeled by linear differential equations, and make it compliant. The course focuses on control design through pole-placement for performance specifications such as stability, reference tracking, disturbance rejection and sensitivity reduction. The lectures will be complemented by labs to provide the students with a hands-on experience of the design techniques in software and hardware.

Course Outcomes/Objectives

On the completion of the course, the student will be able to demonstrate the following:

- Model physical systems using control systems conventions and terminology
- Convert the differential equations to state-space and transfer function representations
- Analyze a linear system stability characteristics
- Understand why feedback is helpful in control systems
- Design a suitable controller to obtain the desired referencing-tracking for a standard input
- Design a suitable controller to obtain the desired frequency response
- Use MATLAB, Simulink and LabView to model physical systems and design the control techniques for physical systems interfaced with these software.

Books	
Text Book:	<u>Control Systems Engineering (7th Edition) by N. S. Nise.</u>
Reference	1. <u>Modern Control Systems, 12th edition, by Dorf and Bishop</u>
Books:	2. <u>Feedback Control of Dynamic Systems, 6th edition, by Franklin, Powell and Emami-Naeini</u>

Course Assessment D	Course Assessment Distribution				
Quizzes:	10 % (6 quizzes)				
Assignments:	15 % (6 homework assignments)				
Mid-term Exam:	20 %				
Final Exam:	30 %				
Lab Performance	25 % (Project 10%, Labs 15%)				

Weekly Leo	Weekly Lecture Breakdown									
Week 1:	Mathematical modeling	Week 10:	Feedback							
Week 2:	Laplace transform	Week 11:	Pole-placement							
Week 3:	Transfer functions	Week 12:	PID							
Week 4:	State-space representation	Week 13:	Root Locus							
Week 5:	State-space to transfer function	Week 14:	Controllability and Observability							
Week 6:	First and 2nd order systems	Week 15:	Frequency response and Bode plots							
Week 7:	Stability	Week 16:	Sketching and interpreting Bode plots							
Week 8:	Reference tracking	Week 17:	Prep week							
Week 9:	Midterm exam	Week 18:	Final exam							

Chapter	Lecture Topics	No. of Lectures
Nise	Introduction to Control	2
Ch 1	Motivation	
	Design process	
	• Mathematical modeling of electrical circuits, mechanical systems, heat and	
	fluid-flow systems	
	 Analytical solutions of linear ODEs 	
	Input-output modeling	
	Modeling in Frequency Domain	4
	• Laplace transform and s-domain	
Nise	Transfer functions	
Ch 2, 5	Poles and zeros	
	Initial and final value theorems	
	 Block diagrams and signal-flow graphs 	
	Dynamic Response	
Nise	Modeling in Time Domain	3
Ch 3	Time-varying systems	
	 State-variables and state-space representation 	
	State-transition matrix	
	Transforming state-space to transfer function	
	Linearization	
Nise	System Response	3
Ch 4	• Impulse and step response	
	• Effect of poles	
	First order system parameters	
	Second order system parameters	
	Effect of additional poles	
	• Effect of zeros	
	Solutions in s-domain and t-domain	
Nise	Stability	2
Ch 6	Internal and BIBO stability	
	Location of poles	
	Routh-Hurwitz criterion	
	Routh's table	
	• Stability in state-space	

Nico	Deference Tracking	2
Ch 7	• Stop romp and parabolic inputs	2
	 Step, ramp and parabolic inputs Steady-state error from transfer functions and State-snace 	
	Sustain types	
	 System types System specifications 	
	 Disturbance 	
	Sensitivity	
	Mid Term Exam	
Nise	Feedback Control Design	7
Ch 8	• Feedback	
	Effects of feedback	
	 Disturbance rejection 	
	 Sensitivity reduction 	
	 Stability properties 	
	Control goals and pole-placement	
	Proportional control	
	Proportional and derivative control	
	Proportional and integral control	
	 Proportional, integral and derivative (PID Control) 	
	Lead and lag compensation	
	Control design using pole placement	
	Sketching and interpreting root locus	
	Design of controllers/compensators using root locus	
Nise	Control Design in State-space	
Ch 12	Signal flow graphs	
	• Full-state feedback	
	• Controllability	
	Controller design using Ackermann's formula	
	• Observability	
NĽ	Observer design using Ackermann's formula	7
NISE Ch 11	Frequency Response Design	/
	 Skotching and interpreting Rode plots 	
	 Gain and phase margins 	
	Final Evam	<u> </u>

Lab#	Lab Topics	Date
1	Differential equations modeling in Simulink	
2	Transfer function representation of systems 1	
3	Transfer function representation of systems 2	
4	State-space representation of systems	
5	Dynamic response of 1 st and 2 nd order systems	
6	Dynamic response of higher order systems	
7	Stability properties of systems	
8	Steady-state error analysis	
9	DC motor speed control	
10	DC motor angular position control	
11	HVAC Control	

12	Inverted pendulum control				
13	Vertical take-off and landing 1				
14	Vertical take-off and landing 2				
15	Project Evaluation				
Final Exam					

Cours	e Learning Objectives (CLOs):		
CLO	Description	BT	PLOs
1	Model physical systems using control systems conventions and terminology	С3	1, 4
2	Analyze a linear system stability characteristics	C4	1, 2
3	Design a suitable controller to track a reference signal and obtain the desired frequency response	С3	2, 3, 5
4	Use MATLAB, Simulink and LabView to simulate physical systems and design the control techniques for systems interfaced with these software and additional hardware	C6	1, 5, 6

Mapping of CLOs to Assessment Modules:									
Assessments	CLO1	CLO2	CLO3	CLO4					
Quizzes	✓	✓	1	✓					
Assignments	✓	✓	1	1					
MidTerm	✓	✓	1						
Final Exam	✓	✓	1	\checkmark					
Lab Performance		✓		\checkmark					
Project	✓	✓	1	\checkmark					

Mapping of CLOs to Program Learning	<mark>g Outcomes (I</mark>	PLOs):		
PLOs/CLOS	CLO1	CLO2	CLO3	CLO4
PLO 1 (Engineering Knowledge)	1	1		✓
PLO 2 (Problem Analysis)		1	1	
PLO 3 (Development of Solutions)			1	\checkmark
PLO 4 (Investigation)	1			
PLO 5 (Modern tool usage)			✓	\checkmark
PLO 6 (The Engineer and Society)				\checkmark
PLO 7 (Environment and Sustainability)				
PLO 8 (Ethics)				
PLO 9 (Individual and Team Work)				
PLO 10 (Communication)				
PLO 11 (Project Management)				
PLO 12 (Lifelong Learning)				

Grading Policy:													
Quiz Policy	The quizz	The quizzes will take place in the lecture right after the submission of a homework											
	assignme	assignment and will be totally based on one of the problems in that assignment. So, in											
	order to s	order to score well in quizzes, students must spend sufficient time solving the homework											
	problems	indivio	lually.	Gradir	ng for c	luizzes	will g	eneral	ly be o	n a sca	le of 0	to 10.	
Assignment	In order to	o deve	op a c	ompre	hensiv	e unde	rstand	ing of	the sul	oject ai	nd pus	h the s	tudents
Policy	out of the	r comf	ort zo	ne in tl	ie subj	ect, ch	alleng	ing pr	oblem	s will	be assi	gned a	S
	homewor	k. The	studen	its mus	st do th	e hom	eworl	c indiv	viduall	y . Cop	ying of	home	work or
	any kind o	of plagi	arism	is high	ly disc	ourage	ed and	violati	ons wi	ll be de	ealt wi	th seve	rely by
	referring	any oc	curren	ces to	the dis	ciplina	ry con	imittee	e and a	straig	ht-aw	ay zer	0.
	Homewor	k subn	nitted l	late by	one d	lay wil	l be po	enaliz	ed by 2	20% , b	ut afte	r that	nothing
	will be ac	cepte	1. All h	omew	vork as	ssignn	ients v	will co	unt to	wards	the to	tal (no)
	'best-of' p	olicy).	The pr	oblem	s in th	e assig	nment	are m	eant to	be cha	allengi	ng to ra	aise the
	students	caliber	in the	subjec	ct, give	them o	confide	ence ar	id enal	ole the	m to pi	repare	not just
	the exams	but th	e real	world	scenar	10S.				1 4 71 -1			1 .
Plagiarism	The cours	e has a	zero-	tolera	nce po	olicy to	oward	s plagi	arism	. While	collab	oratio	n in this
	course is i	ligniy		agea,	you mu	ist ens	ure tha	it you		ciaim (otner p	eopie	S WOFK/
	imagos p	ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures,											
	images, programming codes of others are presented as your own work. You must cite and												
	acknowledge all sources of information in your assignments. Failing to comply with the												
	referral to	the D	iscinli	narv ('ommi	ttee fo	r a stri	ict acti	on wh	ich ma	v noss	ihly lea	ad to
	failing grades in all the courses of the semester												
Grading	Absolute		- uii ui	10 00 0	000 01	0110 00	1110000	•					
8						1			1	1		1	
	Grade	A+	А	A-	B+	В	B-	C+	С	C-	D+	D	F
	Cutoff	>90	>80	>75	>70	>65	>60	>55	>50	>45	>40	>35	<35