Problem 1

$$
\begin{gathered}
I(s)=\left(\frac{1}{R}+\frac{1}{L s}+C s\right) V(s) \\
I(s)=\left(\frac{L s+R+R L C s^{2}}{R L s}\right) V(s) \\
\frac{V(s)}{I(s)}=\frac{R L s}{L s+R+R L C s^{2}} \\
\frac{V(s)}{I(s)}=\frac{\frac{1}{C s}}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}}
\end{gathered}
$$

Problem 2

For writing the differential equation for the displacement x_{1} of mass m_{1} apply the super position principle, m_{1} moving m_{2} stationary

m_{1}

m_{2}

Figure 1: Free Body Diagram of Spring-Mass-Damper System m_{1} moving m_{2} stationary

Using free body diagram, equation of motion form m_{1} according to Newton's second law is

$$
\begin{gather*}
F_{n e t}=m_{1} a=f-\left(x_{1}-x_{2}\right) k-\left(\dot{x_{1}}-\dot{x_{2}}\right) b \\
\left(m_{1} s^{2}+b s+k\right) X_{1}(s)+(-b s-k) X_{2}(s)=F(s) \tag{2.1}
\end{gather*}
$$

Figure 2: Free Body Diagram of Spring-Mass-Damper System m_{2} moving m_{1} stationary

For writing the differential equation for the displacement x_{2} of mass m_{2} apply the super position principle, m_{2} moving m_{1} stationary

$$
\begin{gather*}
m_{2} \ddot{x_{2}}=b \dot{x_{1}}+k x_{1}-b \dot{x_{2}}-k x_{2} \\
m_{2} \ddot{x_{2}}+b\left(\dot{x_{2}}-\dot{x_{1}}\right)+k\left(x_{2}-x_{1}\right)=0 \\
(-b s-k) X_{1}(s)+\left(m_{2} s^{2}+b s+k\right) X_{2}(s)=0 \tag{2.2}
\end{gather*}
$$

$\operatorname{Eq}(2.1) \times(-b s-k)-\operatorname{Eq}(2.2) \times\left(m_{1} s^{2}+b s+k\right)$

$$
\begin{gathered}
(b s+k)^{2} X_{2}(s)-\left(m_{1} s^{2}+b s+k\right)\left(m_{2} s^{2}+b s+k\right) X_{2}(s)=F(s)(-b s-k) \\
X_{2}(s)=\frac{b s+k}{\left(m_{1} s^{2}+b s+k\right)\left(m_{2} s^{2}+b s+k\right)-(b s+k)^{2}} \\
=\frac{b s+k}{m_{1} m_{2} s^{4}+\left(m_{1}+m_{2}\right) b s^{3}+\left(m_{1}+m_{2}\right) k s^{2}} \\
\frac{X_{2}(s)}{F(s)}=\frac{\left|\begin{array}{cc}
m_{1} s^{2}+k+b s & F(s) \\
-(k+b s) & 0
\end{array}\right|}{\left|\begin{array}{cc}
m_{1} s^{2}+k+b s & -(k+b s) \\
-(k+b s) & m_{2} s^{2}+k+b s
\end{array}\right|} \\
\frac{X_{2}(s)}{F(s)}=\frac{b s+k}{\left(m_{1} s^{2}+b s+k\right)\left(m_{2} s^{2}+b s+k\right)-(b s+k)^{2}}
\end{gathered}
$$

Problem 3

$$
\begin{aligned}
& \frac{d y}{d t}+10(1-y)=2 x \\
& \frac{d y}{d t}-10 y+10=2 x
\end{aligned}
$$

Let $u=2 x-10$

$$
\frac{T(s)}{U(s)}=\frac{1}{s-10}
$$

Problem 4

$$
\begin{gathered}
x=\left[\begin{array}{c}
\dot{y} \\
\theta \\
\dot{\theta}
\end{array}\right] \\
{\left[\begin{array}{c}
\ddot{y} \\
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]+\left[\begin{array}{ccc}
0 & \frac{-m g}{M} & 0 \\
0 & 0 & 1 \\
0 & \frac{g}{l} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{y} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{M} \\
0 \\
\frac{-1}{M l}
\end{array}\right] u} \\
y=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{y} \\
\theta \\
\dot{\theta}
\end{array}\right]
\end{gathered}
$$

Problem 5

$$
\begin{gathered}
\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D \\
(s I-A)^{-1}=\left[\begin{array}{cc}
s & 1 \\
-1 & s
\end{array}\right]^{-1}=\frac{1}{s^{2}+1}\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right] \\
\frac{Y(s)}{U(s)}=\frac{1}{s^{2}+1}\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+1 \\
=\frac{1}{s^{2}+1}\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{l}
s+1 \\
1-s
\end{array}\right]+1 \\
=\frac{s(s+1)}{s^{2}+1}
\end{gathered}
$$

Problem 6

$$
\begin{aligned}
Y(s) & =G(s) \frac{1}{s}=\frac{s-1}{s(s+1)(s+2)} \\
& =\frac{\frac{-1}{2}}{s}+\frac{2}{s+1}+\frac{\frac{-3}{2}}{s+2} \\
y(t) & =\frac{-1}{2}+2 e^{-t}-\frac{3}{2} e^{-2 t}
\end{aligned}
$$

Figure 3

Problem 7

$G_{1}(s)=\frac{4}{s+4}, G_{2}(s)=\frac{2}{s+2}$

Figure 4

Problem 8

$$
\begin{gathered}
g(\infty)=\lim _{s \rightarrow 0} s G(s)=\lim _{s \rightarrow 0} \frac{20}{s^{2}+5 s+k} \\
=\frac{20}{k}=10 \\
k=\frac{20}{10}=2
\end{gathered}
$$

Problem 9

$$
\begin{gathered}
s^{2}+10 s+75=0 \\
s=-5 \pm 5 \sqrt{2} j
\end{gathered}
$$

Response of the system is under-damped.

Figure 5

Problem 10

First consider the second order system only

$$
G(s)=\frac{150}{s_{4}^{2}+10 s+75}
$$

For this second order system settling time is:

$$
t_{s}=\frac{4}{\sigma_{d}}=\frac{4}{5}=0.8 \mathrm{sec}
$$

According to second order proximity criteria we have to place third pole as:

$$
p>5\left(\sigma_{d}\right)=5(5)=25
$$

Let $p=30$

Problem 11

Figure 6

Figure 7

Figure 8

Problem 12

$$
r(t)=\cos (2 t)
$$

Problem 13

Applying Routh-Hurwitz criterion to the denominator of transfer function. The routh table is given by

s^{3}	1	4	0
s^{2}	3	$\mathrm{k}+1$	0
s^{1}	$\frac{12-(k+1)}{3}$	0	0
s^{0}	20	0	0

For the system to be BIBO stable all poles should be in left half plane it means there must be no sign change in first column of the table so:

$$
\begin{gather*}
\frac{12-(k+1)}{3}>0 \\
k+1<12 \\
k<11 \tag{13.1}\\
k+1>0 \\
k<-1 \tag{13.2}
\end{gather*}
$$

From $\operatorname{Eq}(13.1)$ and $\mathrm{Eq}(13.2)$

$$
-1<k<11
$$

Problem 14

$$
\begin{gathered}
\frac{Y(s)}{R(s)}=\frac{K G(s)}{1+K G(s)} \\
=\frac{\frac{K}{s^{3}+3 s^{2}+4 s+1}}{1+\frac{K}{s^{3}+3 s^{2}+4 s+1}} \\
6 \text { of } 7
\end{gathered}
$$

$$
\begin{gathered}
=\frac{K}{s^{3}+3 s^{2}+4 s+K+1} \\
E(s)=(1-Y(s)) R(s) \\
=\left(\frac{s^{3}+3 s^{2}+4 s+1}{s^{3}+3 s^{2}+4 s+K+1}\right) \frac{1}{s} \\
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\frac{1}{K+1}<0.1 \\
K+1>10 \\
K>9
\end{gathered}
$$

But for stability $K<11$ so:

$$
9<K<11
$$

Problem 15

$$
\begin{gathered}
\tau \approx 0.7 \\
\sigma \approx \frac{1}{0.7} \approx 1.4
\end{gathered}
$$

Figure 9

