
EE361: Control Systems

Mid Term Exam Solution
Spring 2019
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Problem 2

For writing the differential equation for the displacement x1 of mass m1 apply the super position
principle, m1 moving m2 stationary

Figure 1: Free Body Diagram of Spring-Mass-Damper System m1 moving m2 stationary

Using free body diagram, equation of motion form1 according to Newton’s second law is

Fnet = m1a = f − (x1 − x2)k − (ẋ1 − ẋ2)b

(m1s
2 + bs+ k)X1(s) + (−bs− k)X2(s) = F (s) (2.1)

Figure 2: Free Body Diagram of Spring-Mass-Damper System m2 moving m1 stationary
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For writing the differential equation for the displacement x2 of mass m2 apply the super position
principle, m2 moving m1 stationary

m2ẍ2 = bẋ1 + kx1 − bẋ2 − kx2

m2ẍ2 + b(ẋ2 − ẋ1) + k(x2 − x1) = 0

(−bs− k)X1(s) + (m2s
2 + bs+ k)X2(s) = 0 (2.2)

Eq(2.1)×(−bs− k)-Eq(2.2)×(m1s
2 + bs+ k)

(bs+ k)2X2(s)− (m1s
2 + bs+ k)(m2s

2 + bs+ k)X2(s) = F (s)(−bs− k)
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Problem 3
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Problem 5
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Problem 6
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Figure 3

Problem 7
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Figure 4

Problem 8
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Problem 9

s2 + 10s+ 75 = 0
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Response of the system is under-damped.

Figure 5

Problem 10

First consider the second order system only

G(s) =
150

s2 + 10s+ 75
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For this second order system settling time is:

ts =
4

σd
=

4

5
= 0.8sec

According to second order proximity criteria we have to place third pole as:

p > 5(σd) = 5(5) = 25

Let p = 30

Problem 11

Figure 6

Figure 7
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Figure 8

Problem 12

r(t) = cos(2t)

Problem 13

Applying Routh-Hurwitz criterion to the denominator of transfer function. The routh table is given by

s3 1 4 0

s2 3 k+1 0

s1 12−(k+1)
3 0 0

s0 20 0 0

For the system to be BIBO stable all poles should be in left half plane it means there must be no sign
change in first column of the table so:

12− (k + 1)

3
> 0

k + 1 < 12

k < 11 (13.1)

k + 1 > 0

k < −1 (13.2)

From Eq(13.1) and Eq(13.2)
−1 < k < 11

Problem 14
Y (s)

R(s)
=

KG(s)

1 +KG(s)

=

K

s3 + 3s2 + 4s+ 1

1 +
K

s3 + 3s2 + 4s+ 1

6 of 7



=
K
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But for stability K < 11 so:
9 < K < 11

Problem 15

τ ≈ 0.7

σ ≈ 1

0.7
≈ 1.4

Figure 9
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