
EE361: Control Systems

Homework 5 Solution
Spring 2019

Problem 1

Problem 1

Each of the following plots shows poles and zeros of an open-loop transfer function G(s) with unity feedback.
Sketch the root locus of the closed-loop system for 0 < K <∞.

(If we vary K continuously from 0 to ∞, roots of the closed-loop characteristic equation 1 + KG(s) = 0
change their location and move on a curve called root locus. These roots are actually the location of
closed-loop poles of the unity feedback system.)
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Figure 1.1: (a)

Figure 1.2: (b)
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Figure 1.3: (c)

Figure 1.4: (d)
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Figure 1.5: (e)

Figure 1.6: (f)
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Figure 1.7: (g)

Problem 2

For the following closed-loop system,

(a) Find the range of values of K to yield stability. [Hint: Closed-loop characteristic equation]
The over-all transfer function of the system is given by

T (s) =
G(s)

1 +H(s)G(s)

T (s) =
K(s2 + 20s+ 200)

s(s+ 7)(s+ 9)(s2 + 20s+ 200) +K(s+ 30)

T (s) =
K(s2 + 20s+ 200)

s5 + 36s4 + 583s3 + 4460s2 + (12600 +K)s+ 30K
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In order to find the range of K that yield stability we need to create Routh-Hurwitz table:

s5 1 583 12600+K

s4 36 4460 30K

s3
4132

9

K

6
+ 12600 0

s2
3586580

1033
-
27K

2066
30K 0

s1
9K2 + 55200760K − 180763632000

54K − 14346320
0 0

s0 30K 0 0

Condition-1 :
3586580

1033
− 27K

2066
> 0

=⇒ K < 265672.59

Condition-2 :
9K2 + 55200760K − 180763632000

54K − 14346320
> 0

=⇒ K < 3272.9119,K > −6136690.639

Condition-3 : 30K > 0 =⇒ K > 0

Combining all the conditions we get

0 < K < 3273.9119 (1.1)

(b) Is there a value of K for which the system’s step response will be undamped? If yes, find that value.
System response gets undamped when poles lie on the imaginary axis. The value of K for which the
root locus intersects the imaginary axis is the value at which systems’s step response will become
undamped. From equation-1.1, for K = 3272.9119 the response of the system will become undamped.

(c) Sketch the root locus of the system.[Hint: Convert the closed-loop characteristic equation to the form
1 + KTOL(s) = 0, where transfer function TOL(s) is your equivalent open-loop transfer function with
unity feedback.]
The close loop characteristic equation is given by

s(s+ 7)(s+ 9)(s2 + 20s+ 200) +K(s+ 30)

We need to convert it into 1 +KL(s) = 0 form.

1 +K
s+ 30

s(s+ 7)(s+ 9)(s2 + 20s+ 200)

Hence

G(s) =
s+ 30

s(s+ 7)(s+ 9)(s2 + 20s+ 200)

G(s) =
s+ 30

s(s+ 7)(s+ 9)(s+ 10 + 10j)(s+ 10− 10j)

Poles : 0,−7,−9,−10± 10j

Zeros : −30,∞,∞,∞,∞
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The real axis asymptotes are given as

σa =

∑
finite poles−

∑
finite zeros

nfinitepoles − nfinitezeros
= −4

The angle of the asymptotes are given by

θa =
(2l + 1)180

nfinitepoles − nfinitezeros
= 45,−45, 135, 225

The root locus of the system is given by

Figure 1.8

(d) Find the value of K that will yield an overshoot of 5% of the step response of the system’s dominant
poles. (You can solve this part using rlocus() plot on MATLAB but you must mathematically verify
that at this value, the step response of the system’s dominant poles have an overshoot of 5%.)

From root locus graph we can find that for ζ = 0.672, K = 683

7 of 15



Figure 1.9

Mathematical Justification
The characteristic equation is given by

s5 + 36s4 + 583s3 + 4460s2 + (12600 +K)s+ 30K

For K = 683, the roots of the equation are

−10.3291 + 10.3128j,−10.3291− 10.3128j,−11.4425,−1.95 + 2.145j,−1.95 + 2.145j

Hence the dominant poles are -1.95+2.145j, -1.95-2.145j
The damping ratio can be evaluated using the following formula

ζ =
σ

ωn

ζ =
1.95√

1.952 + 2.1452
= 0.672

(e) Find the value of K that will yield closed-loop poles that give approximately critically damped response.
(You can solve this part using rlocus() plot on MATLAB but you must mathematically verify that
at this value, the system’s dominant poles have a critically damped response.)
The response of the system is critically damped whenever we have repeated poles. From the root locus
diagram we can see that there is one point where repeated poles can exist
For K = 416.5, repeated poles exist at −2.3973

Mathematical Justification
The characteristic equation is given by

1 +KH(s)G(s) = 0

Find the roots of the equation at K = 416.5

s5 + 36s4 + 583s3 + 4460s2 + 13016.5s+ 12486 = 0

The roots of the equation are

−10.2131 + 10.1964i,−10.2131− 10.1964i,−10.8755 + 0.0000i,−2.3973 + 0.0000i,−2.3011 + 0.0000i,
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Problem 3

Consider the temperature control system for a chemical process. You have already analyzed this system
in Homework 4.

The system without any compensation (D(s) = 1) is operating with a 20% overshoot and a peak time of
14 seconds. There is also a considerable steady-state error.

(a) Estimate the value of K at the uncompensated operating specifications given above.

T (s) =
kG(s)

1 + kG(s)H(s)

T (s) =

1.4k

(s+ 1)(s2 + 1.7s+ 0.3)

1 +
0.14k

(s+ 1)(s2 + 1.7s+ 0.3)(s+ 0.1)

Characteristic equation is

1 + k
0.14

(s+ 1)(s2 + 1.7s+ 0.3)(s+ 0.1)
= 0

So we need to plot the root locus with respect to the following transfer function

0.14

(s+ 1)(s2 + 1.7s+ 0.3)(s+ 0.1)

Now using the given specifications,

OS = 0.2 =⇒ ζ =

√
(ln 0.2)2

π2 + (ln 0.2)2
= 0.45

Tp = 14 =⇒ ωd =
π

Tp
= 0.224

σd = ωd tan(sin−1 ζ) = 0.1128

So the two dominant closed-loop poles must lie at s = −0.1128± 0.224j Now to check whether any of
these poles lie on the root locus, at this point ∠G(s)H(s) = 180◦ For value of k,

K =
1

|G(s)H(s)|

K =
1

|G(−0.1128 + 0.224j)H(−0.1128 + 0.224j)|

K =
1

2.0186
= 0.495
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Plugging K = 0.495 in T (s) =
KG(s)

1 + kG(s)H(s)
, we get the following step response of T (s), which match

our specifications.

(b) Design a PID controller so that the compensated system will have a peak time approximately 10 s
and 5% overshoot to a unit step input. Attach the graphs of all your designed root locii and final step
response. (Assume K = 1 for this part.)

Tp = 10s =⇒ ωd =
π

Tp
= 0.314

%OS = 5% =⇒ ζ = 0.691

σd = ωd tan(sin−1 ζ) = 0.2994

For pole at s = −0.2994± 0.314j, design a PD controller first

D(s) = kd

(
s+

kp
kd

)

Characteristic equation 1 +D(s)G(s)H(s) has poles at s = −0.1,−0.2,−1,−1.5 and zero at s = −kp
kd

.

The desired pole is at −0.2994 + 0.314j

10 of 15



We know that on the root locus,

sumofanglesofzeros− sumofanglesofpoles = 180 deg

=⇒ θ3 = 180 + θ1 + θ2 + θ4 + θ5

θ1 = 180 + tan−1
(

0.314

−0.2994 + 0.1

)
= 122.41 deg

θ2 = 180 + tan−1
(

0.314

−0.2994 + 0.2

)
= 107.56 deg

θ4 = tan−1
(

0.314

−0.2994 + 1

)
= 24.14 deg

θ5 = tan−1
(

0.314

−0.2994 + 1.5

)
= 14.65 deg

θ3 = 180 + 107.56 + 14.65 + 24.14 + 122.41 = 448.73 deg

θ3 = 448.73− 360 = 88.73 deg

Let the unknown location of zero be zc.

−0.2994 + zc =
0.314

tan 88.73
=⇒ zc = 0.3036

so,
kp
kd

= 0.3036

Now let’s design a PI controller:

D(s) =

kp

(
s+

ki
kp

)
s

Its pole is at s = 0, so zero must be chosen near the origin so that our PD design is not affected much.
Let zero is at s = −z2 and z2 = 0.065.

Now combining the two,

D(s) =
k(s+ zc)(s+ z2)

s
=
k(s+ 0.3036)(s+ 0.065)

s
=
k(s2 + 0.3686s+ 0.01973)

s

k =
1∣∣∣ (s2+0.3686s+0.01973)

s G(s)H(s)
∣∣∣
∣∣∣∣∣
s=−0.2994+0.314j

= 2.65

D(s) = 2.65(s2 + 0.3686s+ 0.01973)

But for this controller, peak time and overshoot are not according to our requirement.

Hence we’ll need to adjust the value of k using trial and error. By adjusting value of k to 0.81 we can
achieve the given specfications of overshoot and peak time.
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Root locus of the system after implementing PID controller is:

(c) Now design a lag-lead compensator to meet the specifications in (b) and reduce the steady-state error
to 10% of its original value. Attach the graphs of all your designed root locii and final step response.
To calculate the steady state error of the uncompensated system convert the system into corresponding
unity feedback system.Open loop transfer function for the corresponding unity feedback system is

TOL(s) =
G(s)

1 + (1−H(s)G(s)

TOL(s) =
0.688s4 + 1.926s3 + 1.562s2 + 0.344s+ 0.02064

s7 + 5.5s6 + 11.83s5 + 11.84s4 + 4.902s3 + 0.386s2 + 0.0036s+ 0.009
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Steady state error for type-0 system is

ess =
1

1 +Kp

Kp = lim
s→0

TOL(s) = 2.29

ess = 0.3036

Required steady state error is ess = 0.03036.
Now design lead compensator.

Dlead(s) =
k(s+ z1)

(s+ p1)

Place z1 at s = −0.2 to cancel the dominant pole at −0.2.

θ1 = 180 + tan−1
(

0.314

−0.2994 + 0.1

)
= 122.41 deg

θ4 = tan−1
(

0.314

−0.2994 + 1

)
= 24.14 deg

θ5 = tan−1
(

0.314

−0.2994 + 1.5

)
= 14.65 deg

θ2 = 180 + 14.65 + 24.14 + 122.41 = 341.206 deg

θ3 = 360− 341.206 = 18.794 deg

−0.2994 + p1 =
0.314

tan 18.794
=⇒ p1 = 1.2221

Dlead(s) = k
s+ 0.2

s+ 1.2221

Now find k

k =
1

D(s)G(s)H(s)
at s = −0.2994 + 0.314j

k = 2.5

we have to adjust k to reach required peak time.
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By hit and trail, k = 0.1

Now design Lag compensator to reduce steady state error.

Dlag(s) =
s+ z2
s+ p2

Raito between the required strady state error and the error after implementing lead compensator is
30.36. Place the pole p2 = 0.0036 and zero z2 = 0.1 to keep the raito constant (In this case it is
approximately 27).So the lag compensator is:

Dlag(s) =
s+ 0.1

s+ 0.0036
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Combining Lag and Lead compensators:

D(s) =
(s+ 0.1)(s+ 0.2)

(s+ 0.0036)(s+ 1.2221)

Now find k

k =
1

D(s)G(s)H(s)
at s = −0.2994 + 0.314j

k = 2.89

we have to adjust k to reach required peak time.By hit and trail, k = 1.09.Now for compensated sytem
is ess = 0.04,Tp = 8.5sec and %OS = 5.5%

Final root locus of the system after implementing Lag-lead control is
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