
EE361: Control Systems

Homework 1 Solution
Due Thu Feb 21, 2 PM Spring 2019

Problem 1

Consider an RC circuit shown in figure below.

Figure 1: An RC Circuit

(a) Find the transfer function
Vo(s)

Vi(s)
of the electric circuit using the impedance model.

[Hint: Perform nodal analysis with admittance to make your life easier in this case.]

Convert the circuit into corresponding admittance circuit

Figure 2: Admittance Circuit

As G is parallel with C2s

Figure 3: Admittance Circuit

Writing the equation for output node

Vo(s)(G+ C2s+ C1s)− C1sVin(s) = 0 (1.1)

Vout(s)

Vin(s)
=

C1s

G+ C2s+ C1s
(1.2)
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By solving and rearranging the above equation,we get

Vout(s)

Vin(s)
=

RC1s

(C1 + C2)Rs+ 1
(1.3)

(b) Using your answer to (a), find the output voltage vo(t) if R = 100 kΩ, C1 = 500 nF and C2 = 500
nF for each of the following cases, where the input voltage vi, measured in volts, is applied at t = 0.

(i) vi(t) = δ(t)

By putting the values in Eq. (1.3),

Vout(s) =
s

2s+ 20
Vin(s) (1.4)

We know that Laplace of δ(t) is 1 so by applying Vin(s)=1 in Eq. (1.4),

Vout(s) =
s

2(s+ 10)
(1.5)

After converting to partial fraction,

Vo(s) =
1

2
− 5

s+ 10

Taking the inverse Laplace transform,

vo(t) =
1

2
− 5e−10t (1.6)

(ii) vi(t) = 1

Laplace of a constant is
1

s
so put Vin(s)=

1

s
in Eq. (1.3)

Vo(s) =
s

s(2s+ 20)

Vo(s) =
1

2(s+ 10)

Taking the inverse Laplace transform,

vo(t) =
1

2
e−10t

(iii) vi(t) = e−10t

Laplace transform of e−10t is
1

s+ 10
put this in Eq. (1.3)

Vo(s) =
s

2(s+ 10)2

After converting to partial fraction,

Vo(s) =
1

2(s+ 10)
− 5

(s+ 10)2

Taking the inverse Laplace transform,

vo(t) =
1

2
e−10t − 5te−10t
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(iv) vi(t) = sin 2t

Laplace transform of sin 2t is
2

s2 + 4
put Vin(s) =

2

s2 + 4
in Eq. (1.3)

Vo(s) =
2s

2(s+ 10)(s2 + 4)

Vo(s) =
s

(s+ 10)(s2 + 4)

After converting to partial fraction,

Vo(s) =
5s+ 2

52(s2 + 4)
− 5

52(s+ 10)

Vo(s) =
5s

52(s2 + 4)
+

2

52(s2 + 4)
− 5

52(s+ 10)

Inverse Laplace of
s

(s2 + 4)
= cos 2t ,

2

(s2 + 4)
= sin 2t so

vo(t) =
5

52
cos 2t+

1

52
sin 2t− 5

52
e−10t

(v) vi(t) = 15− 5e−10t + 50 sin 2t

[Hint for (v): Apply linearity to the ‘particular solutions’ in (ii), (iii) and (iv).]

Use the superposition property of linear systems.

vi1(t) = 15

Laplace of a 15 is
15

s
so put Vin(s)=

15

s
in Eq. (1.3)

Vo1(s) =
15s

s(2s+ 20)

Vo1(s) =
15

2(s+ 10)

Taking the inverse Laplace transform,

vo1(t) =
15

2
e−10t (1.7)

Now
vi2(t) = −5e−10t

Laplace transform of 5e−10t is
5

s+ 10
put this in Eq. (1.3)

Vo2(s) =
5s

2(s+ 10)2

After converting to partial fraction,

Vo2(s) =
25

(s+ 10)2
− 5

2(s+ 10)

Taking the inverse Laplace transform,

vo2(t) = 25te−10t − 5

2
e−10t (1.8)
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Now
vi3(t) = 50 sin 2t

Laplace transform of 50 sin 2t is
100

s2 + 4
put Vin(s) =

100

s2 + 4
in Eq. (1.3)

Vo3(s) =
100s

2(s+ 10)(s2 + 4)

Vo3(s) =
50s

(s+ 10)(s2 + 4)

Inverse Laplace

vo(t) =
125

26
cos 2t+

25

26
sin 2t− 125

26
e−10t (1.9)

Add Eq. (1.7), Eq. (1.8), Eq. (1.9)

vo(t) =
15

2
e−10t + 25te−10t − 5

2
e−10t +

125

26
cos 2t+

25

26
sin 2t− 125

26
e−10t

(c) Us your answer to b(i) to find the time constant of the circuit?

We know that the general solution to impulse response is

v(t) = vo + vae
− t
τ

Compairing it with Eq.1.6
1

τ
= 10 which means time constant is τ =

1

10
= 0.1sec

(d) Using your answer to (a) and b(ii), verify the final value theorem for a unit step input.

Final value property determines the final value of the waveform vo(t) from the value of lims→0 sVo(s).Applying
final value theorem on Eq. (1.3)

lim
t→∞

vo(t) = lim
s→0

sVo(s) =
s2

2s+ 20
= 0

Which means our system will converge to zero in time domain as time goes to infinity.Now applying
final value theorem to Eq.1.7

lim
t→∞

vo(t) = lim
s→0

sVo(s) =
s2

s(2s+ 20)
= 0

(e) You know that transfer function is evaluated at zero initial conditions. So there seems to be no
way of incorporating non-zero initial conditions to the transfer function method. However, giving
an step response at the input is equivalent to giving the system an initial condition. Now using the
initial value theorem, show that the case b(ii) is equivalent to solving the circuit with vo(0) = 0.5
V and vi(t) = 0 for t > 0.

Applying the initial value theorem on Eq. (1.7)

lim
t→0

vo(t) = lim
s→∞

sVo(s) =
s2

s(2s+ 20)

lim
s→∞

1

2 +
20

s

=
1

2

4 of 10



(f) Now find vo(t) if a DC input voltage of 1 V is applied at t = 0 and vo(0) = 0.5 V.

Transfer Function of the system is

G(s) =
s

(2s+ 20)

Vo(s)

Vin(s)
=

s

(2s+ 20)

Vo(s) =
s

2(s+ 10)
Vin(s)

Vo(s)(s+ 10) = s
Vin(s)

2

Vo(s)s+ 10Vo(s) = s
Vin(s)

2

Inverse Laplace :

v̇o + 10vo =
˙vin
2

Laplace transform of above equation is

Vo(s)s− Vo(0) + 10Vo(s) = Vin(s)
s

2
− Vin(0)

2

Vo(s)s+ 10Vo(s) = Vin(s)
s

2
− Vin(0)

2
+ Vo(0)

Vo(s)(s+ 10) = Vin(s)
s

2
− Vin(0)

2
+ Vo(0)

Vo(s) = Vin(s)
s

2(s+ 10)
− Vin(0)

2(s+ 10)
+

1

s+ 10
Vo(0) (1.10)

Put Vin(s) = 0 , Vin(0) = 0 , Vo(0) = 0.5 in Eq. (1.10)

Vo(s) =
s

2(s+ 10)

vo1 =
1

2
e−10t (1.11)

Put Vin(s) =
1

s
, Vin(0) = 0 , Vo(0) = 0 in Eq. (1.10)

Vo(s) =
s

2s(s+ 10)

vo2 =
1

2
e−10t (1.12)

Adding Eq. (1.11) and Eq. (1.12)

vo =
1

2
e−10t +

1

2
e−10t
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Problem 2

Two carts of masses m1 and m2 with negligible rolling friction are connected to two springs (spring
constant k1 and k2) and dampers (damping constant b1 and b2) as shown in the figure. An input force
u(t) is applied on m1 and the output is the position of m2. The displacements of m1 and m2 from their
equilibrium positions are x1 and x2 respectively.

Figure 4: Double mass-spring system

(a) Write down the differential equation for the displacement x1 of mass m1.

For writing the differential equation for m1 apply the super position principle, m1 moving m2

stationary

Figure 5: Free Body Diagram of Spring-Mass-Damper System m1 moving m2 stationary

Figure 6: Free Body Diagram of Spring-Mass-Damper System m2 moving m1 stationary

Using free body diagram, equation of motion form1 according to Newton’s second law is

Fnet = m1a = u(t)− (x1 − x2)k1 − (ẋ1 − ẋ2)b1

u(t) = m1ẍ1 + (ẋ1 − ẋ2)b1 + (x1 − x2)k1 (2.1)
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(b) Write down the differential equation for displacement x2 of mass m2.

Using free body diagram, equation of motion fo rm2 according to Newton’s second law is

Fnet = m2a = −k2x2−b2ẋ2 + (x1 − x2)k1 + (ẋ1 − ẋ2)b1

m2ẍ2 − (ẋ1 − ẋ2)b1 − (x1 − x2)k1 + k2x2 + b2ẋ2 = 0 (2.2)

(c) Take the Laplace transform of equations in (a) and (b).

Laplace transform of Eq. (2.1)

U(s) = m1s
2X1(s) + k1X1(s) + b1sX1(s)− k1X2(s)− b1sX2(s)

U(s) = (m1s
2 + k1 + b1s)X1(s)− (k1 + b1s)X2(s)

Laplace transform of Eq.2.2

0 = m2s
2X2(s)− k1X1(s)− b1sX1(s) + k1X2(s) + b1sX2(s) + b2sX2(s) + k2X2(s)

0 = −(k1 + b1s)X1(s) + (m2s
2 + k1 + b1s+ b2s+ k2)X2(s)

(d) Find the transfer function
X2(s)

U(s)
. [Hint: Cramer’s rule]

X2(s) =

∣∣∣∣m1s
2 + k1 + b1s U(s)
−(k1 + b1s) 0

∣∣∣∣∣∣∣∣m1s
2 + k1 + b1s −(k1 + b1s)
−(k1 + b1s) m2s

2 + k1 + b1s+ b2s+ k2

∣∣∣∣
X2(s) =

−(k1 + b1s)U(s)

(m1s2 + k1 + b1s)(m2s2 + k1 + b1s+ b2s+ k2)− (k1 + b1s)2

X2(s)

U(s)
=

(k1 + b1s)

(m1s2 + k1 + b1s)(m2s2 + k1 + b1s+ b2s+ k2)− (k1 + b1s)2
(2.3)

(e) Find the approximate transfer function if m2 >> m1, k2 >> k1 and b2 >> b1.

Rearranging Eq. (2.3)

X2(s)

U(s)
=

(k1 + b1s)

(m1m2)s4 + (m2b1 +m1b1 +m1b2)s3 + (m2k1 +m1k2 +m1k1 + b2b1)s2 + (b2k1 + b1k2)s+ k1k2

Taking
1

m2
2k2

2b2
2 common from above equation approximate transfer function of the system will

be

X2(s)

U(s)
=

(k1 + b1s)

(m2b1 +m1b2)s3 + (m2k1 +m1k2)s2 + (b2k1 + b1k2)s
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Problem 3

A common actuator based on the laws of motors and generators and used in control systems is the
direct current (DC) motor to provide rotary motion. The electric equivalent circuit of the armature
and the free-body diagram of the rotor are shown in the following figure.

Figure 7: A simple model of a DC Motor. Quantities ia, Ra and La are armature current, resistance
and inductance respectively. Quantities Jm and θm are moment of inertia and rotational displacement
of the rotor while τ and bθ̇m are torque and frictional torque acting on it.

The motor equations give the torque τ on the rotor in terms of the armature current ia as

τ = Ktia

and express the back emf in terms of the shaft’s rotational velocity θ̇m as

e = Keθ̇m = Keωm

(a) Write down the differential equations of this electromechanical system.

Applying KVL to the circuit,

va = iaRa + La
dia
dt

+ e

iaRa + La
dia
dt

+Keωm = va (3.1)

Applying Newton’s second law to the mechanical part,

Jmω̇m = τ − bωm

=⇒ Jmω̇m + bωm = τ

Jmω̇m + bωm = Ktia. (3.2)

(b) Derive
Ωm(s)

Va(s)
, the transfer function between rotational velocity and armature voltage.

Taking Laplace transform of Eq. (3.1),

RaIa(s) + LasIa(s) +KeΩm(s) = Va(s)

(Ra + Las)Ia(s) +KeΩm(s) = Va(s)

Ia(s) =
1

Las+Ra
Va(s)− Ke

Las+Ra
Ωm(s) (3.3)
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Now taking Laplace transform of Eq. (3.2),

JmsΩm(s) + bΩm(s) = KtIa(s)

Ia(s) =
Jms+ b

Kt
Ωm(s) (3.4)

Now equating Eqs. (3.3) and (3.4),

1

Las+Ra
Va(s)− Ke

Las+Ra
Ωm(s) =

Jms+ b

Kt
Ωm(s)

Va(s) =

(
(Ra + Las)(Jms+ b)

Kt
+Ke

)
Ωm(s)

=⇒ Ωm(s)

Va(s)
=

Kt

(Jms+ b)(Las+Ra) +KeKt
(3.5)

(c) Using part (b), derive
Θm(s)

Va(s)
, the transfer function between rotational displacement and armature

voltage.

Now, because ωm = θ̇m, in terms of their Laplace transforms, we can write

Ωm(s) = sΘm(s)

Now using Eq. (3.5),
sΘm(s)

Va(s)
=

Kt

(Jms+ b)(Las+Ra) +KeKt

=⇒ Θm(s)

Va(s)
=

Kt

s ((Jms+ b)(Las+Ra) +KeKt)

(d) Given that at t = 0, a constant armature voltage Vo is applied. Using part (b), derive an expression
for the rotational velocity of the shaft in steady state.

As, va is equal to a constant voltage Vo. Therefore,

Va(s) =
Vo
s

Now, from Eq. (3.5)

Ωm(s) =

(
Kt

(Jms+ b)(Las+Ra) +KeKt

)
Vo
s

=
KtVo

s((Jms+ b)(Las+Ra) +KeKt)

For steady state value,

ωm(ss) = lim
t→∞

ωm = lim
s→0

sΩ(s) = lim
s→0

s
KtVo

s ((Jms+ b)(Las+Ra) +KeKt)

=⇒ ωm(ss) =
KtVo

Rab+KeKt
(3.6)

As constant voltage is applied, rotational velocity of motor will have some transient response in
start but eventually achieve a constant value.

9 of 10



(e) What is the steady state value of rotational velocity if friction in the motor is very large?Think
about what would you expect in such a case and whether your answer makes sense or not.

As b→∞, the denominator of Eq. (3.6) Rab+KeKt →∞ Therefore,

ωm(ss) =
KtVo

Rab+KeKt
→ 0

The above expression shows that even a constant voltage is applied, the rotational velocity of
motor eventually gets very low as resistance/friction in the motor gets very large. This means that
effectively the motor does not move at all when the friction in the motor is very large.

(f) What is the steady state value of rotational velocity if both armature resistance and friction in the
motor are negligible (Ra → 0, b → 0), and back emf is small (Ke → 0)? Think about what would
you expect in such a case and whether your answer makes sense or not.

As Ra → 0, b→ 0, and Ke → 0 the expression Rab+KeKt → 0. Therefore,

ωm(ss) =
KtVo

Rab+KeKt
→∞

The above expression shows that even if a constant voltage is applied, the rotational velocity of the
motor keeps on getting larger and larger when resistance/friction in the motor is very low (almost
zero).

(g) Now suppose that a load is attached to the motor through a gear system with gear ratio N = Nl
Nm

,
where Nl and Nm are number of teeth of gears at the load’s input and motor’s output respectively.
Find the steady-state rotational velocity of the rotor if the load’s moment of inertia is Jl and its
rotation experiences a friction with damping constant bl.

Using Eq. (3.6)

ωm(ss) =
KtVo

Rab+KeKt

Now due to attached load through gear system

b = bm +

(
Nm

Nl

)2

bl

so

ω′m(ss) =
KtVo

Rabm +Ra

(
Nm

Nl

)2

bl +KeKt

(h) Compare your answers to (d) and (g) if Nl > Nm.

By rearranging the answer to (g)

ω′m(ss) =
KtVoN

2
l

N2
l Rabm +RaN2

mbl +N2
l KeKt

If Nl > Nm then ω′m(ss) > ωm(ss)
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