

Information Technology University Department of Electrical Engineering

EE361: Control Systems			
Course Code	EE361	Semester	Spring 2017
Credit Hours	3+1	Pre-reqs	Electrical Network Analysis
Instructor	Usama Bin Sikandar	E-mail	usama.sikandar@itu.edu.pk
Office	06-06	Instructor Office Hours	Wed 12-2PM, otherwise just walk in
Department	Electrical Engineering	Discipline	Engineering
Teaching Assistants	Muhammad Awais, Amna Maqbool	Google Classroom	
Lab Instructors	Yasir Manzoor, Sanan Ahmad	Lab Timings	Monday 1-4pm

Course Description

This course explores the modeling, analysis and design of linear control systems through feedback, reference tracking and disturbance rejection while considering stability criterion. Students will also get a thorough exposure of graphical design techniques in the second half of the course. The lectures will be complemented by labs to provide the students with a hands-on experience of the design techniques in software and hardware.

Course Outcomes/Objectives

On the completion of the course, the student will be able to demonstrate the following: Model different real-world mechanisms using control systems conventions and terminology Understand the stability criterion and design specification for control systems Use algebraic and graphical techniques to design controllers for LTI systems

Books	
Text Book:	Feedback Control of Dynamic Systems, 6th edition, by Franklin, Powell and Emami-Naeini
Reference	<i>Modern Control Systems,</i> 12 th edition, by Dorf and Bishop
Books:	Modern Control Engineering, 4 th edition, by Ogata

Course Assessment Distribution		
Quizzes:	15 % (7 quizzes + 3 lab quizzes)	
Assignments:	10 % (7 homework assignments + 3 project assignments)	
Mid-term Exam:	20 %	
Final Exam:	30 %	
Lab Performance	25 % (Project 10%, Labs 15%)	

Weekly Lecture Breakdown			
Week 1:	Mathematical modeling and ODEs	Week 10:	Fundamentals of controller design
Week 2:	Input-output and state-space	Week 11:	Modeling and design case-study
Week 3:	Laplace transform	Week 12:	Root locus intro
Week 4:	Transfer function and modeling	Week 13:	Root locus examples
Week 5:	Dynamic Response	Week 14:	Frequency domain design intro
Week 6:	Stability	Week 15:	Bode plots and stability margins
Week 7:	Feedback	Week 16:	Compensation
Week 8:	PID control	Week 17:	Nyquist stability criterion
Week 9:	Mid-term exam	Week 18:	Final exam

Information Technology University Department of Electrical Engineering

Chapter	Lecture Topics	No. of Lectures
Franklin	Introduction to Modeling and ODEs	4
2.1, 2.2,	 Electrical circuits, mechanical systems, heat and fluid-flow systems 	
2.3, 7.1,	 Analytical and numerical solutions of linear ODEs 	
7.2	 Input-output modeling 	
	 State-space representation 	
	Laplace Transform and Dynamic Response	4
	 Meaning of Laplace transform 	
Franklin	 Solutions of ODEs; Impulse and step response 	
3.1, 3.2,	 Convolution 	
3.4	 Transfer functions 	
	 Systems modeling and block diagrams 	
	 Dynamic Response 	
Franklin	Stability	2
3.3, 3.5,	 Internal and BIBO stability 	
3.7	 Poles and zeros 	
	 Routh-Hurwitz criterion 	
Franklin	Introduction to Control	2
1.1-1.2	 Conventions and terminology (plant, controller, actuator, sensor etc.) 	
	 Open-loop and closed loop 	
	 Examples: temperature control, cruise control etc. 	
Franklin	Feedback Control	4
4.1-4.3	 Effects of feedback 	
	 Unity feedback 	
	 Reference tracking, steady state error and system types 	
	 PID control 	
	Mid Term Exam	
Dorf	Fundamentals of Control Systems Design	5
Pg.	 Setting up control goals 	
244-286	 Performance criterion 	
	 Pole-placement 	
	 Reference tracking 	
	 Disturbance rejection 	
	 Sensitivity reduction 	
Franklin	Root Locus Design	4
Ch. 5	 Plotting root locus 	
	 Desired pole region 	
	 Dynamic compensation 	
	 Design examples 	
Franklin	Frequency Response Design	7
Ch. 6	 Nyquist stability criterion and argument principle 	
	 Bode-plots and gain and phase margins for stability 	
	 Dynamic compensation 	
	Dynamic compensation	
	 Design examples 	

Information Technology University Department of Electrical Engineering

Lab#	Lab Topics	Date
1	Differential Equations Modeling in Simulink	30 th Jan, 2017
2	Numerical Solutions of ODEs using Matlab	6 th Feb, 2017
3	Transfer Function and State Space Representation of Systems	13 th Feb, 2017
4	Step and Impulse response of Systems	20 th Feb, 2017
5		
6	Performance Specifications of 2 nd order systems	6 th Mar, 2017
7	Steady-state error analysis	13 th Mar, 2017
8	Effect of Controller on System Parameters	20 th Mar, 2017
	Mid Term Exam	
9	PID Controller Designing and Implementation	3 rd Apr, 2017
10	DC Motor Speed Control	10 th Apr, 2017
11	Levitating a Ping-pong Ball Using a Propeller 1	17 th Apr, 2017
12	Levitating a Ping-pong Ball Using a Propeller 2	24 th Apr, 2017
13	Holiday	1 st May, 2017
14	Anti-windup control, Root Locus	8 th May, 2017
15		
16		
Final Exam		

Grading Policy:	
Assignment Policy	assignment and will be totally based on one of the problems in that assignment. So, in order to score well in quizzes, students must spend sufficient time solving the assignment problems individually. Grading for quizzes will generally be on a scale of 0 to 10. The assessment quiz in the first lecture would not be counted towards final grade. In order to develop comprehensive understanding of the subject, homework assignments will be given. Assignments late by one day will be penalized by 20%. After that nothing will be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment individually. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The questions in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams. Most of the problems in the
	exams will also be based on the assignments, hence, to pass this course, it cannot be emphasized enough that students need to spend sufficient time on the assignment
Plagiarism	problems individually. ITU maintains a zero tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the ITU plagiarism policy will lead to strict penalties including a failing grade in the course and referral to the Disciplinary Committee for a strict action, which may possibly lead to failing grades in all the courses of the semester.
Grading	Final grading will not be relative. The exact policy will be decided at the end of the course.